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Abstract

Designing capacitated survivable networks: Polyhedral analysis and algorithms

by

Deepak Rajan

Doctor of Philosophy in Engineering-Industrial Engineering and Operations Research

University of California, Berkeley

Professor Alper Atamtürk, Chair

In this dissertation, we develop new methodologies and efficient algorithms to solve

the capacitated survivable network design problem. Given the graph and demands be-

tween pairs of nodes, we wish to install integer multiples of capacity on the edges and

route the demand while minimizing costs. A network is said to be survivable if all de-

mands can be rerouted under the failure of any one of its edges. Traditionally, one

uses some variant of the following two approaches: protection or restoration. Protec-

tion schemes can be further classified into dedicated protection and shared protection.

We propose a method that uses failure-flow patterns for rerouting of disrupted flow.

A hybrid between dedicated and shared protection schemes, our method imposes no

restrictions on the network, but explicitly introduces slack on the directed cycles used as

failure-flow patterns for rerouting disrupted flow. Using failure-flow patterns results in a

much smaller formulation than other approaches in terms of number of constraints; we

handle the exponential number of directed cycle variables using column generation.

We study the arc-set and cut-set polyhedra associated with the problem to generate

strong valid inequalities. We develop various families of inequalities, and describe ef-

ficient separation algorithms for these and other classes of inequalities. By pricing out

directed cycle variables and separating the valid inequalities in a branch-and-cut frame-

work, we show that it is possible to solve much larger problem instances using directed

cycles (than shared protection), without significant loss in capacity efficiency. Further-
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more, the cuts added improve overall performance by an order of magnitude.

The following two directions of research show significant promise in solving capaci-

tated survivable network design problems more effectively. The first considers directed p-

cycles as failure-flow patterns for obtaining higher capacity efficiency. Preliminary results

are very encouraging; however, pricing sub-problems and polyhedral structure change

significantly. The second, approached from two complementary directions, involves the

development of stronger classes of inequalities. In the former direction, we develop

problem-specific metric-type inequalities for design of survivable networks using various

failure-flow patterns. In the latter, we develop problem-independent strong valid inequali-

ties for the mixed-integer knapsack set, a relaxation of any mixed-integer program.

Professor Alper Atamtürk, Chair
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Chapter 1

Introduction

The goal of this dissertation is to develop new methodologies and efficient algorithms to

solve the capacitated survivable network design problem. The ever increasing demand

for high-speed communication networks is one of the major motivations for research in

modeling and solving network design problems. We are concerned only with the planning

problem; a study of the real-time routing decisions merits another dissertation all by itself.

Given a set of origin-destination vertex pairs (commodities) and demand data for the

commodities, we are interested in installing integer multiples of capacity on the edges and

routing the demand through the network while minimizing total (capacity installation and

flow) costs. For example, installing or leasing fiber-optic cables on a telecommunication

network, determining the capacities of production lines or warehouses in a production-

distribution system, determining the number of engines to power a set of trains on a

railroad network can all be viewed as installing capacities on the edges of a network and

routing the flow of commodities on the network.

A telecommunications network may be represented as a graph where the edges cor-

respond to transmission cables carrying signals between nodes that represent users. In

this case, the capacity types are fiber-optic transmission cables of various capacities and

installation costs; whereas the commodities are pairwise bandwidth requirements be-

tween users, who are represented as nodes. Associated with each commodity is a triple

corresponding to the source user, the destination user, and the amount of bandwidth

needed (demand), respectively.
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Since equipment failures and accidents can not be avoided entirely, the network must

be designed so as to survive failure. A network is said to be survivable if all of the de-

mands on the network can be met under the failure of any one of its edges. This is done

by judiciously installing sufficient spare capacity over the working edges of the network;

all traffic may be diverted by way of this spare capacity in case of a failure. Since this

dissertation is motivated by applications in the telecommunications industry, we focus on

the design of survivable telecommunication networks. However, most of the mathemati-

cal models and solution procedures are also equally applicable to any other problem on

physical and/or time-expanded networks that can be abstracted as a capacitated surviv-

able network.

Since capacitated survivable network design problems are modeled as mixed-integer

programs, we study several polyhedra of relaxations associated with the problem, in an

attempt to generate strong (facet-defining) valid inequalities that explicitly use the surviv-

ability requirements. This is because optimization problems over complicated sets can

be solved more efficiently by using strong inequalities from simple structured relaxations

of these sets; see Section 1.5 for a review of polyhedral techniques in mixed-integer pro-

gramming. Another advantage of this approach is that valid inequalities to these simpler

sets may be useful in solving optimization problems over other complicated sets. We also

investigate the complexity of separating these valid inequalities. In particular, we focus

on the arc-set and cut-set polyhedra.

To motivate this study, we discuss the network design problem with no survivability

requirements (NDP) in Chapter 2. This problem is also referred to as the network load-

ing problem when there is no pre-existing capacity on the edges of the network. In this

chapter, we first review the literature summarizing existing results on the cut-set polyhe-

dra, and then present our new results on the arc-set polyhedra. In particular, we develop

a linear-time separation algorithm for the residual capacity inequalities that completely

describe the splittable arc set. We also introduce two new classes of inequalities that

generalize previous results for the unsplittable arc set. We conclude Chapter 2 by pre-

senting computational results that underscore the effectiveness of these inequalities in

2



www.manaraa.com

solving the NDP.

Survivable networks with minimum capacity requirements can be designed by formu-

lating the problem as a capacitated network design problem for each failure scenario,

linked by common integral capacity variables. In fact, this is the same as global rerout-

ing. However, such a framework is not implemented in practice. Therefore, a number of

practical models and strategies have been developed for designing survivable networks.

In Chapter 3, we review these methodologies for designing survivable networks. To eval-

uate these strategies, we measure the capacity requirements and compare them with the

capacity requirements of global rerouting. We say that a framework is more capacity-

efficient if it requires less capacity to ensure survivability.

We also propose a new method for designing survivable networks using predeter-

mined structures for rerouting of disrupted flow. We refer to these structures that reroute

all disrupted flow as failure-flow patterns. We explicitly introduce slack on these failure-

flow patterns on the network to reroute all disrupted flow under failure, see Chapter 3 for

the mixed-integer programming formulation for this framework using directed cycles as

the failure-flow patterns. In this approach, a hybrid of dedicated and shared protection,

we impose no restrictions on the network, but use these failure-flow patterns for rerout-

ing all failure flows. In particular, using directed cycles as failure-flow patterns yields

survivable networks with dedicated protection-like ease-of-implementation and shared

protection-like capacity efficiency.

In Chapter 4, we study the polyhedra of several relaxations of the survivable network

design problem using directed cycles (SDC), and develop cut-set inequalities. Further-

more, we extend them to k-partition inequalities; k = 2 for a cut set. We also discuss how

the arc-set inequalities developed for NDP in Chapter 2 can be extended to SDC. We see

that using predetermined failure-flow patterns such as directed cycles allows us to deal

with formulations with fewer constraints, but an exponential number of directed cycle vari-

ables. We study the pricing complexity of the directed cycle variables and handle them

using a column-generation scheme.

Computational experiments to solve SDC, summarized at the end of Chapter 4, are
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highly encouraging for two main reasons. Firstly, we are able to solve much larger prob-

lem instances using failure-flow patterns, as compared with shared protection schemes

such as global rerouting. Furthermore, in terms of capacity efficiency, using directed cy-

cles as the patterns is better than dedicated protection schemes which require at least

twice as much capacity as NDP. Secondly, the cuts added reduce the integrality gap by

about 30% at the root node of the branch-and-cut search tree, and improve overall perfor-

mance by an order of magnitude. To design more capacity-efficient survivable networks

with even less computational effort, we consider two major directions of research.

The former is work in progress, and shows significant promise. In this direction of

research, we look at other methods for ensuring survivability. In Chapter 5, we present

preliminary computations comparing these models, and motivate the use of directed p-

cycles as failure-flow patterns (SDP). This approach appears to perform almost as well

as global rerouting, which provides a lower bound on capacity requirements for surviv-

able networks. The models, pricing sub-problems, and valid inequalities however change

when compared with SDC.

The latter direction involves the development of stronger classes of inequalities. We

approach this objective from two complementary directions.

First, we develop metric-type inequalities for the design of survivable networks. These

problem-specific inequalities for the class of network design problems generalize the k-

partition inequalities. In Chapter 6, we review metric inequalities for the NDP, and develop

new metric-type inequalities for various frameworks that ensure survivability. We present

computational results indicating the effectiveness of these inequalities in solving SDP.

Second, we describe strong valid inequalities for the mixed-integer knapsack set. We

develop our inequalities using sequence independent lifting of facets of the restriction

of this set with one continuous and two integer variables. In Chapter 7, we review ear-

lier work in this direction, and then present our results. This is a problem-independent

approach, because the mixed-integer knapsack set is a relaxation of any mixed-integer

program; these inequalities can be used to solve many classes of problems beyond ca-

pacitated survivable network design. Furthermore, we can develop more valid inequal-
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ities for survivable network design problems by generating facets to the knapsack set

described by any metric-type inequality.

Finally, in Chapter 8, we conclude by summarizing our contribution and outlining di-

rections for future research.

Next, we present the assumptions and notation which will be used throughout this

dissertation. All the mathematical notation is repeated in Appendix A. Since we study

several polyhedra associated with the problem in an attempt to generate strong (facet-

defining) valid inequalities, we present an overview of mixed-integer programming and

polyhedral theory in Section 1.5, and formally define the arc-set and cut-set polyhedra

in Section 1.6. We also present a brief introduction to computational complexity in Sec-

tion 1.3, and linear programming theory in Section 1.4.

1.1 Notation

Throughout this dissertation, we assume that all data is rational.

We use Z,R and Q to denote the set of integers, reals and rational numbers, re-

spectively. The set of non-negative and positive integers are denoted by Z+ and Z++,

respectively; other sets are defined similarly.

We use B as shorthand to represent the set {0, 1}.

Throughout this dissertation, we use log to denote the logarithm to base 2.

For any set N , we use |N | to denote the number of elements in it.

For any vector function v defined on a set N , we let v(H) =
∑

i∈H vi for H ⊆ N .

Let α ∈ R. We define bαc = maxx{x ∈ Z : x ≤ α} and dαe = minx{x ∈ Z : x ≥ α}.

Let β ∈ R. We define r(α, β) = α− bα/βcβ, and use r(α) to denote r(α, 1).

Let [i, k] be the set of integers {j ∈ Z : i ≤ j ≤ k}. We use IntUni[α, β] to indicate an

integer-uniform distribution with minimum α and maximum β.

We define (·)+ = max{(·), 0}.

We define the indicator function I{(·)} to take the value 1 if (·) is true, and 0 otherwise.

The ith element of a list L is denoted by L[i].
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We use ε to represent a small strictly positive constant.

We use the following notation for all the network-based formulations in this disserta-

tion. Let G = (V,E) be an undirected graph with node set V and edge set E. Let F be

the set of all ordered pairs (arcs) from E, i.e., F = {(ij), (ji) : [ij] ∈ E}. We use (ij) to

denote the arc from node i to node j, and [ij] to denote the edge between nodes i and j.

Thus, arcs in F are directed links between nodes on a network, and the undirected

links between nodes are edges in E. We use G′ = (V, F ) to denote the directed graph.

For the sake of notational convenience, we use F \ [ij] to represent F \ {(ij), (ji)}.

For H1 ∈ F , we use [H1] to represent the set {[ij] ∈ E : ij ∈ H1}.

Let S be the set of failure states. A failure state is defined as the set of edges that fail

simultaneously. The set S is defined to include the no-failure state, denoted by 0.

In the case of single-edge failures, S = E ∪ {0}.

Let K = [1, |K|] be the set of commodities.

Let {(sk, tk, dk)}k∈K be the commodity triples of source and destination nodes sk and

tk, and dk be the supply at sk for tk, k ∈ K. Let bki be the supply of commodity k at node

i, i.e., bk
sk = dk, bk

tk
= −dk, and bki = 0 for i ∈ V \ {sk, tk}.

We define variable yks
ij as the fraction of commodity k routed through arc (ij) ∈ F in

failure state s. Let ek
ij be the cost associated with routing each unit of commodity k ∈ K.

In path-based formulations, we use yp to indicate the fraction of commodity routed on

path p. We use P s
k to denote the set of paths from sk to tk in failure state s.

For any path p, we set δp
ij = 1 if it includes arc (ij), and 0 otherwise.

Also, for any path p, we set ζp
s = 1 if it is affected by failure state s ∈ S \ {0}. When all

flow variables in a formulation only model no-failure routing, we drop the superscript s.

Let T be the set of installable capacity types.

The capacity qt for type t ∈ T is the maximum amount of demand that can be routed

using one unit of capacity type t.

We define the capacity variable xt
[ij] as the amount of capacity of type t ∈ T installed

on edge [ij]. Let ht
[ij] be the cost of installing unit capacity of type t ∈ T on edge [ij] ∈ E.

If only one capacity type exits, then we drop the superscript t. Furthermore, we can
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then without loss of generality assume that all demand data are scaled such that the

capacity unit is 1.

For all practical purposes, the cost of sending flow on arc (ij) is insignificant when

compared with the cost of installing capacity on edge [ij], eij � h[ij]; we keep eij in the

formulation for generality.

Let C and C be the sets of undirected and directed cycles of G and G′, respectively.

For cycle c, we define the variable zc to denote the amount of slack reserved on cycle

c, for both undirected and directed cycles. We use slack to refer to fractional capacity that

is reserved to cover no-failure flows; z are modeled as continuous variables.

Let αc
ij be 1 if directed cycle c includes arc (ij), and 0 otherwise. For undirected

cycles, we say that αc
[ij] is 1 if undirected cycle c includes edge [ij], and 0 otherwise.

Let ρc
[ij] be 1 if edge [ij] is a chord to cycle c, and 0 otherwise.

For all edges covered by a failure-flow pattern, we refer to failures of edges used by

the pattern as arc failures, and those not used by the pattern as chord failures.

We use g0
ij to denote the pre-existing amount of demand routed through arc (ij) ∈ F .

We use w0
[ij] to denote the pre-existing capacity on edge [ij] ∈ E.

1.2 Assumptions

For all the models discussed in this dissertation, we assume that capacity installed on an

edge can be used to send flow up to capacity in both directions. Thus, the capacity is

undirected even though flow is directed. This assumption is motivated from many kinds of

telecommunications networks, for instance asynchronous transfer mode networks. The

results can be easily adapted to the case where capacity must be greater than the sum

of flows in both direction, and to the case where capacity is directed.

Network design problems can be differentiated into splittable flow (when there are no

restrictions on how the commodities must be routed) and unsplittable flow (when flow of a

commodity is restricted to run through a single path along the network). The unsplittable

flow case is modeled by constraining the flow variables y to be binary.
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It is possible to define commodities by aggregating all of the flow originating from a

node. However, we use pairs of nodes to describe commodities in the formulations be-

cause the column generation algorithms for path-based formulations of multi-commodity

flow and network design problems converge to an optimal LP solution faster when com-

modities are disaggregated (Jones et al. 1993).

The formulations of most network design problems in this dissertation primarily con-

sist of three types of constraints. The first class is the flow balance constraints, which

ensure that all commodities are routed in the no-failure state. The second class is the

capacity constraints, which ensure that sufficient capacity exists on each edge for each

failure state. The third class is the survivability constraints, which ensure that all com-

modities are routed in every failure state. This class of constraints can look very different

depending on the methodology used for ensuring survivability.

1.3 Computational complexity

We present some of the definitions and notations used to measure the complexity of the

algorithms presented in this dissertation; see Papadimitriou and Steiglitz (1998) for a

good introduction to complexity theory.

Definition 1.1 Let f and g be real-valued functions that are defined on the same set

of real numbers. Then f , is O(g(x)) if and only if there exist c, x0 ∈ R++ such that

|f(x)| ≤ c · |g(x)| for all x ≥ x0.

Let P be a problem, A be an algorithm that solves P , andX be an instance of problem

P . Before we discuss properties of algorithms, we define the notions of decision problems

and certificates.

Definition 1.2 A decision problem is a problem with a yes or no answer.

Definition 1.3 A certificate is the extra information so the correctness of an answer to a

decision problem can be checked.

We denote the length (in a reasonable encoding) of the instance by L(X), and the

number of elementary calculations required to run algorithm A on instance X by fA(X).
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Definition 1.4 The running time of algorithm A is defined as the maximum number of

elementary operations required to solve any instance X of P , as a function of its length,

and is denoted by f∗A(`). Thus, f∗A(`) = supX{fA(X) : L(X) = `}.

Definition 1.5 A is said to be a polynomial-time algorithm if there exists p ∈ Z++ such

that f∗A(`) = O(`p).

Polynomial algorithms can be further classified into strongly polynomial and weakly

polynomial, depending on whether the running time of the algorithm depends on the

magnitude of the numbers describing the instance.

Definition 1.6 Algorithm A is said to be strongly polynomial if f ∗A(`) is bounded by a

polynomial function that does not involve the magnitude of the numbers in the description

of the instance.

Definition 1.7 Algorithm A is weakly polynomial if it is polynomial and not strongly poly-

nomial. In other words, O(`p) contains terms involving log θ, where θ is the largest number

in the input.

We are mainly interested in polynomial algorithms since they scale well with the size of

the input. An algorithm that is not polynomial is called an non-polynomial-time algorithm,

and is defined formally as follows.

Definition 1.8 An algorithm A is said to be an non-polynomial-time algorithm if f ∗A(`) 6=

O(`p), for any p ∈ Z++.

Some non-polynomial-time algorithms are better than others. One such class of

non-polynomial-time algorithms that is of interest is the class of pseudo-polynomial al-

gorithms.

Definition 1.9 An algorithm A is pseudo-polynomial if it is polynomial in the length of

the data when encoded in unary. This means that A is polynomial in the parameters and

the magnitude of the instance data θ.

An simple example of an problem with a pseudo-polynomial algorithm is the pure-

integer knapsack problem: Given n integers ci, wi, i ∈ [1, n], and b, maximize
∑n

i=1 cixi

9
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for all integers xi ≥ 0, i ∈ [1, n] such that
∑n

i=1wixi ≤ b. There is an O(nb) algorithm for

this problem. This is a polynomial-time algorithm only when b is bounded by a polynomial

function of n.

We also classify problems depending upon the best known algorithm for solving the

problem. First, we define the class of problems which have polynomial algorithms.

Definition 1.10 P is defined as the class of all problems for which there exist some

polynomial algorithm.

Second, we classify those problems for which no known polynomial algorithms exist.

Definition 1.11 NP is the class of decision problems that can be solved in polynomial

time on a non-deterministic turing machine.

Definition 1.11 is not particularly useful for checking whether a problem P ∈ NP. The

following definition, which is equivalent, allows us to classify problems in NP.

Definition 1.12 A decision problem P ∈ NP if for every instance X of P for which

the answer is yes, there exists a certificate of polynomial length that can be checked in

polynomial time.

P ∈ NP does not imply that no polynomial algorithm exists for P . In fact, P ⊆ NP.

A simple example for the class NP is the decision version of a binary program: ∃x ∈ Bn

such that Ax ≤ b, cx ≥ k? If the answer is yes, then the binary vector x̄ is a polynomial

certificate; whether Ax̄ ≤ b, cx̄ ≥ k can be checked in polynomial time.

Some problems in NP may be harder to solve than others. We call this class of

problems NP-complete. To determine whether a problem is NP-complete, we need the

notion of polynomial reducibility.

Definition 1.13 If every instance of P can be converted in polynomial time to an instance

of Q, then P is polynomially reducible to Q.

Definition 1.14 Problem is NP-complete if P ∈ NP and every other problem Q ∈ NP

is polynomially reducible to P .
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For any optimization problem, we can pose a closely related decision problem, which

is in fact a question, and can be answered by yes or no.

Definition 1.15 Given an instance X of a maximization problem P , such that the set of

feasible solutions is H, and the cost of any h ∈ H is c(h), we define the following decision

version for all k ∈ R: Is there a feasible solution h ∈ H such that c(h) ≥ k?

It is easy to see that we can obtain the solution of the decision version trivially from the

solution of the optimization problem. Thus, the optimization problem is at least as hard to

solve as its decision version. The class of problems NP-hard extends NP-complete to

include problems that are not in NP.

Definition 1.16 Problem P ∈ NP-hard if every problem Q ∈ NP is polynomially re-

ducible to P .

Such a definition now allows us to classify difficult optimization problems (which, not

being decision problems, are not in NP) whose decision versions are NP-complete.

Thus, we can say that an optimization problem is NP-hard if its decision version is NP-

complete.

1.4 Linear programming theory

We review some aspects of linear programming theory that are used later in this disser-

tation, see Chvátal (1983) for more details.

Let |N | = n, and A be an m × n matrix. In standard linear programming theory, the

constraints of a linear program can be represented in many equivalent forms. For the

purpose of this discussion, we formulate an LP as follows.

zLP = max{cx : x ∈ SLP },

where SLP = {x ∈ Rn
+, Ax ≤ b}.

Observe that SLP is a polyhedron, since it is defined as a set of points that satisfy a

finite number of linear inequalities; see Definition 1.29. For this polyhedron, we define

extreme points and extreme rays.
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Definition 1.17 x ∈ SLP is an extreme point of SLP if there do not exist x1, x2 ∈

SLP , x
1 6= x2 such that x = 1

2x
1 + 1

2x
2.

Definition 1.18 Let S0
LP = {x ∈ Rn : Ax ≤ 0}. If SLP 6= ∅, then x ∈ S0

LP \ {0} is called

a ray of SLP .

Since S0
LP is a cone, it is often referred to as the polyhedral cone of SLP .

Definition 1.19 A ray x of SLP is an extreme ray of SLP if there do not exist rays x1, x2 ∈

S0
LP , x

1 6= αx2 for any α > 0 such that x = 1
2x

1 + 1
2x

2.

To determine whether an LP is infeasible, a certificate is obtained using Farkas’

Lemma. This key result is also used to derive much of linear programming theory.

Proposition 1.20 (Farkas’ Lemma) For allA, b, exactly one of the following holds: either

∃x ≥ 0 such that Ax ≤ b, or ∃w ≥ 0 such that wA ≥ 0 and wb < 0.

The dual problem to an LP is derived using the following function. Consider the func-

tion g : Rm
+ 7→ R defined as

g(w) = max
x∈R

n
+

{cx+ w(b−Ax)}.

For every vector w ∈ Rm
+ , g(w) is a upper bound on the optimal value of the original LP.

To achieve the best bound, we minimize g(w); this maximization problem is the dual to

the original LP.

Definition 1.21 The dual to the original LP is the optimization problem

zD = min
w≥0

{wb : wA ≥ c}.

Similar to the original LP, a cone can be defined for the dual.

Definition 1.22 The dual cone of the LP is set of points w ∈ Rm
+ that satisfy wA ≥ 0.

When an LP contains a large set of constraints or variables, it is often solved by

starting with a reduced set, and adding the remaining constraints/variables when needed.

In fact, to solve a particular instance, we really only need constraints that have positive
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dual values and variables that have positive values at optimality. The problem is that we

don’t know which variables and constraints these are.

In problems with large numbers of variables, we can address this problem with a

delayed column generation approach. To do so, we start with a subset of variables, and

solve the LP with these variables. By adding artificial variables, we can assume without

loss of generality that there exists a feasible solution to this LP. Given the restricted LP

optimum, the problem of finding a variable with a positive reduced cost is referred to as

the pricing problem.

Let Ai denote column i of matrix A. Consider the restricted LP obtained by consider-

ing only the subset of the columns indexed by set I.

zI
LP = max{cx : x ∈ R

|I|
+ ,

∑

i∈I

Aixi = b}

We solve this LP and calculate an optimal primal and dual solution pair (x̄, w̄). Now,

we need to generate a new variable j for which the reduced cost is positive. This can be

done by maximizing the reduced cost,

max
j∈N\I

{cj − w̄Aj}.

However, we do not need to find the optimal solution to this problem; any solution with

a positive reduced cost will suffice. If there exists a variable with positive cost, then we

add the new column to the set I and re-solve the restricted LP. If there exists no such

variable, the restricted LP gives us the optimal solution to the original LP.

1.5 Mixed-integer programming: An overview

Definition 1.23 Let N,P be sets such that |P | = p and |N | = n. For m ∈ Z+, let A

be an m × n matrix, G an m × p matrix, and b an m dimensional column vector. Let

S = {x ∈ Zn
+, y ∈ R

p
+, Ax + Gy ≤ b}. Then, a mixed-integer program (MIP) can be

formulated as

zMIP = max{cx+hy : (x, y) ∈ S}.
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Set S is called the feasible region, and any (x, y) ∈ S is called a feasible solution; see

Schrijver (1987), Nemhauser and Wolsey (1988), and Wolsey (1998) for a comprehensive

study on mixed-integer programming.

Since MIPs (and other optimization problems) are represented using matrices, the

variables are often referred to as columns, and constraints as rows.

If the mixed-integer program has only integer variables (P = ∅), then it is referred to as

a pure-integer program (IP). On the other hand, if there are continuous variables and all

integer variables are constrained to be 0 or 1 in any feasible solution, then the program is

referred to as a mixed-binary program. The special case with exclusively binary variables

is referred to as a binary program. A single constraint mixed-integer program is also

called a mixed-integer knapsack. The pure-integer, mixed-binary and binary knapsacks

are defined analogously as the single constraint special cases of pure-integer program,

mixed-binary program, and binary programs, respectively.

The mixed-integer set S is not convex. However, one can define the smallest convex

set that contains S, the convex hull of S.

Definition 1.24 The convex hull of a mixed-integer set S, denoted by conv(S), is the set

of all points that are convex combinations of elements of S.

Definition 1.25 The inequality πNx + πP y ≤ π0 (denoted (πN , πP , π0)) is called a valid

inequality for a mixed-integer set S if it is satisfied by all elements of S.

Definition 1.26 For any inequality πNx+ πP y ≤ π0 that is valid for mixed-integer set S,

the set F = {(x, y) ∈ S : πNx+ πP y = π0} is called a face of conv(S).

Definition 1.27 Let a1, . . . , an be scalars not all equal to 0. Then, the set H consisting

of all x ∈ Rn such that
∑n

i=1 aixi = 0 is an (n− 1)-dimensional hyperplane.

Valid inequalities are often referred to as cutting planes (or cuts) since they define

hyperplanes in (n + p)-dimensional space. An alternate definition of valid inequalities

uses the concept of half-spaces.

Definition 1.28 A half-space is that portion of an n-dimensional space obtained by re-

moving the part lying on one side of an (n− 1)-dimensional hyperplane.
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Now, inequality is said to be valid for the set S if the half-space defined by the inequal-

ity contains S.

Definition 1.29 A polyhedron P ⊆ Rn+p is a set of points that satisfy a finite number of

linear inequalities.

For any polyhedron, we can define its extreme points and extreme rays. We do so in

Section 1.4 for the feasible regions of linear programs; however, the definitions are valid

for all polyhedra.

Definition 1.30 A set of vectors (x, y)1, . . . , (x, y)k is affinely independent if the unique

solution of
∑k

i=1 λix
i = 0,

∑k
i=1 λiy

i = 0,
∑k

i=1 λi = 0 is λi = 0, ∀i ∈ [1, k].

Definition 1.31 A polyhedron P is of dimension k (denoted by dim(P ) = k) if the maxi-

mum number of affinely independent elements in P is k + 1.

Definition 1.32 Face F of polyhedron P defines a facet of P if dim(F ) = dim(P ) − 1.

The inequality describing face F is then called a facet-defining inequality, or a facet.

The strength of an inequality is measured by the dimension of the face defined by it.

An inequality defining a face of higher dimension is deemed a stronger inequality. Thus,

the strongest inequalities define facets of the polyhedron.

1.5.1 Cutting-plane algorithm

The mixed-integer programming problem is NP-hard (Garey and Johnson 1979). One

approach to solving mixed-integer programs is using a relaxation algorithm. While any

relaxation may be used, the most commonly-used variant is the linear programming (LP)

relaxation; this is called a cutting-plane algorithm.

Definition 1.33 A relaxation of MIP is any maximization problem zR = max{zR(x, y) :

(x, y) ∈ SR} such that S ⊆ SR and cx+ hy ≤ zR(x, y), ∀(x, y) ∈ S.

The strength of a relaxation is usually measured by the proximity of zR to zMIP , ei-

ther as a ratio or in terms of the difference. A relaxation R1 is said to be stronger than

relaxation R2 if zR1
is closer to zMIP than zR2

.
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We obtain the linear programming relaxation by dropping the integrality constraints

on x to obtain the set SLP . The linear programming relaxation is often used since it is

polynomially solvable (Khachian 1979), and is easy to implement computationally.

We define a collection of linear programs {LP i}, with corresponding feasible sets

{Si
LP }. We use zi

LP to denote the value of the optimal solution to LP i, and (x, y)i
LP ∈ SLP

to denote the feasible solution that attains this optimum.

Definition 1.34 The cutting-plane algorithm works as follows.

Step 1. (Initialization) i = 1.

Step 2. (Termination) If (x, y)i
LP ∈ S, then (x, y)i

LP is an optimal solution to MIP. Stop.

Step 3. (Refinement) Let (πi
N , π

i
P , π

i
0) be a valid inequality for S such that πi

Nx
i
LP +

πi
P y

i
LP > πi

0. Define Si+1
LP = Si

LP ∩ {(x, y) ∈ Si
LP : πi

Nx + πi
P y ≤ πi

0}. Set i = i + 1, and

go to Step 2.

One attempts to solve successively stronger LP relaxations of S. The crucial part

of the cutting-plane algorithm is the generation of strong valid inequalities that cut off

fractional solutions. Therefore, the focus of any polyhedral study is to develop these valid

inequalities that can be utilized in a cutting-plane algorithm.

It is known that the convex hull of any mixed-integer set conv(S) is a polyhedron

(Meyer 1974), and thus can be described by a finite set of inequalities. If we know the

polyhedral description of the convex hull of a mixed-integer set S, then we can solve the

mixed-integer program as a linear program over the set conv(S). This description may be

exponential in size; however, the optimization problem can still be solved in polynomial

time by using the ellipsoid algorithm if there exists a polynomial separation algorithm for

the inequalities in this description (Grötschel et al. 1981).

Definition 1.35 The separation problem for the polyhedron conv(S) is to determine

whether any rational vector (ȳ, x̄) is an element of S, and if not, to construct a valid

inequality πNx+ πP y ≤ π0 for S such that πN x̄+ πP ȳ > π0.

The separation problem is the refinement step of the cutting-plane algorithm. We

attempt to separate the facets of conv(S), which are the strongest valid inequalities that
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one may describe. However, since mixed-integer programming is NP-hard, there exists

no polynomial algorithm for the separation problem unless P = NP. Thus, conv(S) is

usually not known, and we approximate it as well as we can.

Fortunately, valid inequalities for any relaxation SR are also valid for conv(S). We

study the convex hulls of the relaxations of S, namely conv(SR), and attempt to describe

their facets.

We wish to study relaxations that are complex; thus yielding a stronger relaxation than

the LP relaxation. At the same time, the relaxation must be easier to study than the mixed-

integer program. Two relaxations often studied in the context of network design problems

are the arc set and the cut set. These relaxations are formally defined in Section 1.6, and

studied in detail throughout this dissertation.

An intuitive relaxation for any mixed-integer program, not just survivable network de-

sign problems, is the relaxation described by any one of its constraints. This is the mixed-

integer knapsack set, and is the focus of our study in Chapter 7.

1.5.2 Strong valid inequalities

An effective method for computing strong valid inequalities for any polyhedron P is by

lifting; where P is either conv(S) or some relaxation conv(SR). We wish to obtain the

facets of the polyhedron P .

Definition 1.36 A restriction of mixed-integer set SR is the set ST ⊆ SR.

Lifting refers to the process of extending simple valid inequalities of low-dimensional

restrictions of P into valid inequalities for the polyhedron P . Introduced by Gomory (1969)

in the context of the group problem, it has been used extensively to develop strong valid

inequalities for mixed-integer programs. We limit our discussion to low-dimension restric-

tions obtained by setting a strict subset of the variables to their (upper or lower) bounds.

In particular, we consider the mixed-integer set SL,U , defined as follows. For a subset

T of [1, n], letAT denote the matrix of columnsAi, i ∈ T ofA. Let li and ui be the smallest

and largest values that any integer variable xi, i ∈ [1, n] may take in a feasible solution to

17
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SR; ui may be infinite. Let (L,U, T ) be a partition of N such that ui <∞, ∀i ∈ U , t = |T |.

We use L ⊆ N and U ⊆ N to denote sets of variables fixed to their lower bounds and

upper bounds, respectively. Then,

SL,U (d) = {xT ∈ Zt
+, y ∈ R

p
+ : ATxT +Gy ≤ d}.

describes the restriction obtained by fixing all variables in L to their lower bounds, and all

variables in U to their upper bounds, when d = b−ALlL −AUuU .

While the restriction is defined for this particular value of d, we parametrize the def-

inition of SL,U to describe all mixed-integer sets with the same coefficient matrix, but

different constant terms on the right hand side.

Definition 1.37 For any valid inequality

πTxT + πP y ≤ π0 (1.1)

of SL,U (d), and a ∈ Rm, we define its lifting function Φ : Rm 7→ R ∪ {∞} as

Φ(a) = π0−max{πTxT +πP y : (xT , y) ∈ SL,U (d−a)}.

For any valid inequality to a mixed-integer set, the lifting function can also be defined

in terms of the value function ω : Rm 7→ R to the set. The value function is a parametric

mixed-integer optimization problem over the set, and is defined as follows.

Definition 1.38 Given any πT ∈ Rt, πP ∈ Rp, a ∈ Rm, we define the value function

ω : Rm 7→ R for SL,U as

ω(a) = max{πTxT +πP y : (xT , y) ∈ SL,U (a)}.

Thus Φ(a) = π0 − ω(d − a). The lifting function Φ is useful in describing strong valid

inequalities for SR in terms of the inequalities of SL,U .

Definition 1.39 Any function φ : Rm 7→ R is super-additive on D ⊆ Rm if φ(a1)+φ(a2) ≤

φ(a1 + a2) for all a1, a2 ∈ D such that a1 + a2 ∈ D.

Suppose that φ : Rm 7→ R is also a lower bound of Φ. Then, the valid inequality
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(πT , πP , π0) for SL,U can be extended to the valid inequality

πTxT +
∑

i∈L

φ(Ai)(xi − li) +
∑

i∈U

φ(−Ai)(ui − xi) + πP y ≤ π0 (1.2)

for SR. Furthermore, if φ(Ai) = Φ(Ai) for all i ∈ L, φ(−Ai) = Φ(−Ai) for all i ∈ U , and

inequality (1.1) defines a k-dimensional face of conv(SL,U ), then inequality (1.2) defines a

face of conv(SR) of dimension at least k+ |L|+ |U | (Atamtürk 2004). Thus, facets for the

restriction SL,U yield facets of SR when this property is satisfied; this technique is often

used to obtain facet-defining inequalities.

Super-additivity of φ allows us to lift all restricted variables in one iteration, in a tech-

nique known as sequence independent lifting. If we do not use a super-additive lower

bound, then the coefficient of any restricted variable depends on the sequence in which

it is lifted. Furthermore, the lifting problem needs to be solved at each iteration, for each

variable. Thus, super-additive lifting functions reduce the computational burden in lifting.

Naturally, there is a trade-off in the strength of the inequality obtained if Φ is not super-

additive, forcing us to use a super-additive lower bound. If i ∈ L is binary, then the lifting

function Φ gives us the coefficient binary variable xi has when lifted first. In Chapter 7,

we develop strong valid inequalities of mixed-integer knapsack set by lifting the facets

of its restriction with one continuous and two integer variables, obtained by fixing the

other variables to zero. An often-used technique for obtaining simple yet strong valid

inequalities of knapsack sets is by the procedure of rounding. This procedure usually

does not result in facets of the knapsack sets; except in very simple cases. Nevertheless,

these inequalities are often strong (high dimensional faces) and are easily obtained.

Integer rounding (IR) is based on the simple principle that if a is integer and a ≤ b,

then a ≤ bbc. For any pure-integer knapsack set

Sp = {x ∈ Zn
+ :

n
∑

i=1

aixi ≤ b},

we can assume that ai ∈ Z i ∈ [1, n], by scaling. Thus, by integer rounding,

n
∑

i=1

aixi ≤ bbc.

Similarly, strong valid inequalities for mixed-integer sets can be obtained by the pro-
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cess of mixed-integer rounding (MIR), as follows. Consider the mixed-integer set

Sm = {x ∈ Zn
+, y ∈ R

p
+ :

n
∑

i=1

aixi +

p
∑

j=1

gjyj ≤ b}.

Here, we do not assume that any of the data is integral. By mixed-integer rounding, we

obtain the strong valid inequality

∑

i∈[1,n] : r(ai)≤r(b)

baicxi +
∑

i∈[1,n] : r(ai)>r(b)

(baic +
r(ai) − r(b)

1 − r(b)
)xi +

∑

j∈[1,p] : gj<0

gj

1 − r(b)
yj ≤ bbc.

1.5.3 Branch-and-cut algorithm

Mixed-integer programs are usually solved by using a branch-and-bound algorithm. While

the branch-and-bound algorithm may use any relaxation, we use the linear programming

LP relaxation since it is the focus of our study.

We define L as a collection of mixed-integer programs, L = {MIP i}. Let zi
LP denote

the optimal solution to the LP relaxation of MIP i (denoted by LP i), and (x, y)i
LP denote

the element of Si
LP that attains this optimum. Let zi

MIP represent the upper bound to

MIP i, and zMIP indicate the current best solution to MIP.

Definition 1.40 The branch-and-bound algorithm using the LP relaxation is as follows.

Step 1. (Initialization) L = {MIP}, S0 = S, z0 = ∞, zMIP = −∞.

Step 2. (Termination) If L = 0, then the solution (x∗, y∗) that yielded zMIP = cx∗+hy∗

is optimal. Stop.

Step 3. (Problem Selection and Relaxation) Choose any problemMIP i from L. Solve

LP i, and delete MIP i from the list.

Step 4. (Pruning) If zi
LP ≤ zMIP , then go to Step 2. Else, if (x, y)i

LP 6∈ Si, then go to

Step 5. Else if (x, y)i
LP ∈ Si and zi

LP > zMIP , then let zMIP = zi
MIP , delete from L all

problems with zi
MIP ≤ zMIP , and go to Step 2.

Step 5. (Division) Let Sj = S ∩ {x` ≤ bx∗`c} and Sk = S ∩ {x` ≥ dx∗`e}, for some

variable ` ∈ N such that x∗` 6∈ Z. Divide Si into Sj and Sk. Add problems MIP j and

MIP k to L, and set zj = zk = zi
LP .

There are other techniques of division, but variable dichotomy is the most used in
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practice. There are many other open issues that are implementation-dependent. For

instance, one may employ a variety of techniques to select the next problem, MIP i.

The effectiveness of the branch-and-bound algorithm depends on the strength of its

relaxation. Thus, we are interested in LP relaxations that approximate conv(S) well. Sub-

sequently, branch-and-bound algorithms can be improved by adding cutting planes at

each node of the branch-and-bound tree. This implementation results in the commonly

used branch-and-cut algorithm. The effectiveness of these cutting planes can be mea-

sured empirically by the improvement in the LP relaxation solution at the root node. We

refer to this quantity as the root improvement, and calculate it as 100×
zroot−z0

LP

zMIP−z0
LP

, where

zroot is the value of the LP relaxation at the root node before branching.

Crowder et al. (1983) demonstrated that the use of valid inequalities for single con-

straint relaxations of pure-binary programs were effective in solving them. Cutting plane

methods have been successfully used in solving many mixed-integer programming prob-

lems. Another advantage of this approach is that valid inequalities to these relaxations

may be useful in solving optimization problems over other complicated sets. For a recent

survey on cutting planes in mixed-integer programming, see Marchand et al. (2002). One

approach for generating such inequalities has its roots in disjunctive programming (Balas

1979, Jeroslow 1980). Based on these ideas, lift-and-project-cuts for mixed-binary pro-

grams have been developed by Balas et al. (1993) and Sherali and Adams (1994), and

extended to mixed-integer programming recently by Owen and Mehrotra (2001).

Mixed-integer programs are usually solved using the LP relaxation in a branch-and-

bound algorithm, see Definition 1.40. If we solve restricted LPs at each node of the tree,

and price out variables as needed, then this implementation is called the branch-and-

price algorithm.

For some successful applications of cutting-plane algorithms to several classes of

network design problems, see Magnanti et al. (1993, 1995), Barahona (1996), Bienstock

and Günlük (1996), Brockmüller et al. (1996), Bienstock and Muratore (2000), Atamtürk

(2002), and Atamtürk and Rajan (2002). These works mainly study the polyhedron of the

cut-set and arc-set relaxations of the problem.
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1.6 Cut sets and arc sets

Let (A,B) be a non-empty partition of the nodes V , and let G′
A = (A,FA), G′

B = (B,FB)

be the sub-graphs defined by them. Let [AB] be the edges with one end in A, the other

in B; corresponding to these edges, let AB be the arcs directed from A to B, and BA be

the arcs directed from B to A. Let K ′ be the set of commodities that have source and

destination nodes sk and tk in the same sub-graph. Let KA = {k ∈ K : sk ∈ A, tk /∈ A}

and KB = {k ∈ K : sk ∈ B, tk /∈ B}. We also define dA =
∑

k∈KA
dk, dB =

∑

k∈KB
dk,

and new flow variables yA
ij =

∑

k∈KA
yk

ij , y
B
ij =

∑

k∈KB
yk

ij .

We obtain the cut-set relaxation as follows. We aggregate all nodes in A into a sin-

gle master node, and similarly for B. Mathematically, this is done by adding all the flow

balance constraints for all nodes in each partition. On doing this, all flow balance con-

straints for commodities in K ′ are eliminated. We also substitute yA
ij and yB

ij wherever

possible in both the flow balance and capacity constraints. Commodities in KA and KB

are aggregated into single flow balance constraints;
∑

ij∈AB y
A
ij −

∑

ij∈BA y
A
ij = dA and

∑

ij∈AB y
B
ij −

∑

ij∈BA y
B
ij = −dB.

Any optimal solution to the relaxation will set flow variables yk
ij to zero, for all (ij) ∈

AB ∪ BA, k ∈ K ′. Thus, we can remove them from the formulation. Finally, we assume

that enough capacity exists on all the edges in E \ [AB], and thus we can remove the

capacity constraints corresponding to these edges from the formulation. Mathematically,

we can do this by adding a sufficiently large positive constant to the right hand sides of

the capacity constraints for these arcs. This gives us the 2-partition relaxation of the NDP

with two commodities KA and KB. The single-commodity relaxation can be obtained by

aggregating commodities KA and KB into a single commodity.

This procedure can be extended to yield k-partitions, for k > 2. Now, for a subset U

of the set of partitions, we define KU = {k ∈ K : sk ∈ U, tk /∈ U}, and dU =
∑

k∈KU
dk.

As for 2-partitions, AB is used to denote the set of arcs directed from A to B

In the presence of variables for failure-flow patterns in SDC and SDP, all cover con-

straints other than those corresponding to arcs across the various partitions (AB and BA
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when k = 2) can be eliminated. This is because these variables have no costs in the

objective, and since the flows on all other arcs can be set to zero in any optimal solution

to the k-partition relaxation. We use C̄ to denote set of directed cycles that cross the

partition; let C′ = C \ C̄.

The arc-set relaxation is obtained by considering the polyhedron for the capacity con-

straint of any arc.
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Chapter 2

Network design problem: A

polyhedral study

Since the capacitated network design problem with no survivability requirements (NDP)

can be formulated as a mixed-integer program; we focus our attention on polyhedral

approaches to solve this formulation. In particular, we review existing research on the

cut-set polyhedron in Section 2.2, and then present our work on the arc-set polyhedra.

Most of these results, presented in Section 2.3, have been published in Atamtürk and

Rajan (2002). In Section 2.4, we report computational results that utilize both the cut-

set and arc-set inequalities. The experiments show that adding these inequalities in a

branch-and-cut framework often reduced our computation time in solving the NDP by an

order of magnitude. In subsequent chapters, we incorporate survivability.

2.1 Problem formulation

Before we introduce the NDP, we define some related but simpler problems. We first

present the multi-commodity flow problem, which is subsequently extended to the fixed-

charge network flow problem, and finally to NDP.

Definition 2.1 Multi-commodity flow problem (MFP): Given a directed network, flow

costs, a capacity for each edge, and a set of commodities (given in terms of their origin-

24



www.manaraa.com

destination pairs and demands1), we wish to route the commodities so that the flow on

any arc is at most the capacity on the edge and all demands are met, at minimum total

flow cost.

In this problem, we are only concerned with the minimum cost routing of commodities

on an existing network. MFP is a linear programming problem, and hence can be solved

in polynomial time. An extension of this problem is when we incur a fixed cost for sending

flow on a particular arc, presented next.

Definition 2.2 Fixed-charge network flow problem (FCP): Given a directed network, flow

costs, fixed costs, a capacity for each edge, and a set of commodities (given in terms of

their origin-destination pairs and demands), we wish to route the commodities so that the

net flow on any arc that is used is at most the capacity on the edge and all demands are

met, at minimum total cost; in addition to the flow costs, we incur a fixed cost for each

edge that we use to route flow on.

In FCP, we incur costs not only for routing flows but also for the edges used. Hence

some design aspects are incorporated into the problem. FCP is NP-hard because it

contains as a special case the NP-hard Steiner Tree Problem (Garey and Johnson 1979).

The capacities of the edges we choose are predefined. We can extend the problem by

including capacity selection in the decision-making process. We enforce that we can add

only integer multiples of capacity, else the problem is trivial; we simply solve the shortest

path problems for each commodity and install exactly as much capacity as required.

In NDP, we incur a cost for every unit of flow routed, and a capacity installation cost

for each integer unit of capacity installed. We no longer incur a fixed cost for using an

edge though it is possible to define the problem so. We may also have more than one

capacity type, each with its own cost, presumably with economies of scale. In a telecom-

munications network, the capacity types are fiber-optic cables with different bandwidth

capacities and installation costs. We are now ready to define NDP.

Definition 2.3 Network design problem (NDP): Given a directed network, a set of in-

stallable capacity types, flow costs, capacity installation costs for each edge, and a set
1Demand refers to quantity of the commodity to be routed between its origin and destination nodes.
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of commodities (given in terms of their origin-destination pairs and demands), we wish to

route the commodities so that the net flow on any arc is at most the capacity installed on

that edge and all demands are met, at minimum total cost; in addition to the flow costs,

we incur a capacity installation cost for every unit of capacity we install.

Let G = (V,E) be an undirected graph with node set V and edge set E. Let F be

the set of all ordered pairs (arcs) from E, i.e., F = {(ij), (ji) : [ij] ∈ E}. We use (ij) to

denote the arc from node i to node j, and [ij] to denote the edge between nodes i and

j. We use G′ = (V, F ) to denote the directed graph. Let K be the set of commodities.

Let {(sk, tk, dk)}k∈K be the commodity triples of source and destination nodes sk and tk,

and dk be the supply at sk for tk, k ∈ K. Let bki be the supply of commodity k at node i,

i.e., bk
sk = dk, bk

tk
= −dk, and bki = 0 for i ∈ V \ {sk, tk}.

We define variable yk
ij as the fraction of commodity k routed through arc (ij) ∈ F .

Let ekij be the cost associated with routing each unit of commodity k ∈ K. Let T be the

set of installable capacity types. The capacity qt for type t ∈ T is the maximum amount

of demand that can be routed using one unit of capacity type t. We define the capacity

variable xt
[ij] as the amount of capacity of type t ∈ T installed on edge [ij]. Let ht

[ij] be

the cost of installing unit capacity of type t ∈ T on edge [ij] ∈ E. We use w0
[ij] to denote

the pre-existing capacity on edge [ij] ∈ E. NDP can be formulated as follows.

min
∑

(ij)∈F

∑

k∈K

ekijy
k
ij +

∑

[ij]∈E

∑

t∈T

ht
[ij]x

t
[ij]

s.t. :
∑

(ij)∈F

dkyk
ij −

∑

(ji)∈F

dkyk
ji = bki ∀i ∈ V, ∀k ∈ K (2.1)

∑

k∈K

dkyk
ij ≤

∑

t∈T

qtxt
[ij] + w0

[ij] ∀(ij) ∈ F (2.2)

xt
[ij] ∈ Z+ ∀[ij] ∈ E, ∀t ∈ T

yk
ij ∈ R+ ∀(ij) ∈ F, ∀k ∈ K.

Constraints (2.1) ensure that all demands are met, and constraints (2.2) ensure that

capacity installed on edge [ij] is large enough to accommodate the flow routed on arc

(ij). We will use this formulation to compare with formulations of other survivability frame-
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works in subsequent chapters. For the rest of this dissertation, we assume that there is

only one capacity type, and drop the capacity subscript t. This allows us to assume that

all demand data are scaled such that the capacity unit is 1.

The problem can be differentiated into the splittable flow network design problem

(when there are no restrictions on how the commodities must be routed) and unsplittable

flow network design problem (when flow of a commodity is restricted to run through a

single path along the network).

For a review of NDP, see Balakrishnan et al. (1997). NDP is NP-Hard even for the

single commodity case (Chopra et al. 1998). Furthermore, it is difficult to solve NDP

optimally; branch-and-bound algorithms are not effective in solving even small instances

of NDP. In Section 2.4, we see that many of the sample instances with 25 nodes and 41

edges, on average, are not solved to optimality within an hour of computation; we also

present some results that illustrate the effectiveness of cutting planes in solving NDP.

2.2 Cut-set polyhedra

For a precise definition of the cut set, see Section 1.6. Inequalities developed from the

cut-set polyhedra are known to improve the LP relaxations of network design problems

significantly (Magnanti and Mirchandani 1993, Bienstock and Günlük 1996, Günlük 1999,

Atamtürk 2002); however, their separation problem is NP-hard (Bienstock 2001).

Magnanti et al. (1993) were the first to develop partition inequalities for NDP. The

authors study a two-node problem, and show that the cut-set inequality is facet-defining

for this special case. In fact, it completely describes the convex hull of the projection on

to the space of the integral capacity variable. This inequality can be generalized to any

2-partition (A,B) of the network. For the partition (A,B) of the nodes V , let [AB] be the

edges with one end in A, the other in B. Let KA = {k ∈ K : sk ∈ A, tk ∈ B}. Defining

dA =
∑

k∈KA
dk, we obtain the cut-set inequality

∑

[ij]∈[AB]

x[ij] ≥ ddAe. (2.3)
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For the 3-node problem, the authors describe the 3-partition inequality, and show that

the 2-partition (cut-set) inequalities and the 3-partition inequality completely describe the

convex hull of the projection on the space of the capacity variables x.

In Magnanti et al. (1995), the authors extend this work to the case with two capacity

types, where the capacity of the larger type is an integral multiple of the other. In Magnanti

and Mirchandani (1993), the authors consider network design problems with a single

commodity and one, two, or three capacity types. Barahona (1996) present a cutting-

plane algorithm based on the cut-set inequalities, where they formulate its separation

problem as a max-cut problem.

Bienstock and Günlük (1996) also investigate the polyhedral structure of NDP and

develop a cutting-plane algorithm. Using mixed-integer rounding, they generalize the

cut-set inequalities to include some continuous flow variables. Corresponding to edges

in the partition [AB], let AB be the arcs directed from A to B, and BA be the arcs directed

from B to A. For H ⊆ AB, they present the flow cut-set inequality

r(dA)
∑

ij∈H

x[ij] +
∑

k∈KA

dk
∑

(ij)∈AB\H

yk
ij ≥ r(dA)ddAe. (2.4)

They also consider the case with two capacity types. Chopra et al. (1998) generalize

these inequalities further to include flow variables in both directions across a cut set.

Bienstock et al. (1998) compare cutting-plane algorithms based on the natural formu-

lation of NDP, and a reformulation in terms of the capacity variables, respectively. They

show that the two formulations are comparable and yield effective algorithms for solv-

ing real-life problems when used in conjunction with cutting planes in a branch-and-cut

framework. Günlük (1999) introduces new families of partition inequalities with continu-

ous variables for the problem with two capacity types.

Atamtürk (2002) studies the cut-set polyhedron in detail, and presents a complete

description of the single-commodity single-capacity cut set. He extends the analysis to

multi-capacity and multi-commodity cut-set polyhedra, and reports computational experi-

ments that underscore the effectiveness of these cut-set inequalities in solving NDP.
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2.3 Arc-set polyhedra

In this section, we study the polyhedra of splittable and unsplittable single arc-set re-

laxations of the NDP, defined precisely in Section 1.6. We investigate the optimization

problems over these sets and the separation and lifting problems of valid inequalities for

them. In particular, we present a linear-time separation algorithm for the residual capac-

ity inequalities (Magnanti et al. 1993) and show that the separation problem of c-strong

inequalities (Brockmüller et al. 1996) is NP-hard, but can be solved over the subspace of

fractional variables only. We introduce two classes of inequalities for the unsplittable flow

problems that generalize the c-strong inequalities. In Section 2.4, we present a summary

of computational experiments with a branch-and-cut algorithm for the NDP to empirically

test the effectiveness of the results presented here.

2.3.1 Introduction

In many applications of the NDP, the flow of a commodity is restricted to run through a sin-

gle path along the network. This is the case, for instance, in telecommunication networks

running asynchronous transfer mode (ATM) protocol, production-distribution with single

sourcing, and express package shipping networks (Gavish and Altinkemer 1990, Barn-

hart et al. 2000). These problems are generally formulated using a binary flow variable

yk
ij for each commodity-arc pair (k, (ij)) that takes on a value of 1 if the commodity uses

the arc, 0 otherwise. If the flow of commodities is allowed to be split among several paths,

then the binary restriction on the flow variables is dropped, and we have 0 ≤ yk
ij ≤ 1. In

either case, for each arc (ij) of the network there is a capacity constraint of the form

∑

k∈K

dkyk
ij ≤ w0

[ij] + x[ij]. (2.5)

In this section, we study the convex hull of solutions to constraints of the form (2.5).

We drop the index for arcs and edges for the rest of the chapter. We investigate optimiza-

tion problems over the splittable and unsplittable arc-set polyhedra and the separation

and lifting problems of valid inequalities for them. Defining the feasible regions for these
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polyhedra formally,

DS = {0 ≤ yk ≤ 1 k ∈ K, x ∈ Z} and DU = {y ∈ {0, 1}|K|, x ∈ Z},

the sets we consider are defined as

Splittable flow arc set: FS = {(y, x) ∈ DS :
∑

k∈K

dkyk ≤ w0 + x},

Unsplittable flow arc set: FU = {(y, x) ∈ DU :
∑

k∈K

dkyk ≤ w0 + x}.

The unsplittable flow arc set FU is a relaxation of the feasible region of the more

familiar binary knapsack set obtained by introducing an integer variable x with no bounds.

Although the formulation of FU is quite similar to the formulation of the binary knapsack

set, we show in Section 2.3.4 that its structure is quite different from the latter. The

splittable flow arc set FS is the relaxation of FU obtained by allowing the binary variables

to take on any real value between 0 and 1. Finally, we let FL denote the relaxation of

FS obtained by dropping the integrality restriction on y as well. FL is the LP relaxation of

both FS and FU . The following proposition presents an important property of the extreme

points of FL.

Proposition 2.4 For any extreme point (ȳ, x̄) of FL, let H̄ = {k ∈ K : 0 < ȳk < 1}.

Then, |H̄| ≤ 1.

Proof See Appendix B.

Without loss of generality, we assume that dk > 0 for all k ∈ K, since if dk < 0, yk can

be complemented and if dk = 0, yk can be dropped. We do not impose a sign restriction

on the constant term w0, as this term may take on negative or non-negative values for

the separation and lifting problems defined in following sections.

2.3.2 Related work and our contributions

The polyhedral structure of the binary knapsack set, a restriction of FU , has been studied

extensively (Balas 1975, Hammer et al. 1975, Wolsey 1975, Padberg 1979, Zemel 1989,

Weismantel 1997, Gu et al. 1998). Another set related to FU , the binary knapsack set
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with a single continuous variable, obtained by replacing integral variable x with a non-

negative continuous variable (Marchand and Wolsey 1999, Richard et al. 2002).

Magnanti et al. (1993) study the facial structure of conv(FS) when w0 = 0. They

define an exponential class of valid inequalities, called the residual capacity inequalities,

and show that the residual capacity inequalities and the constraints of FL are sufficient

to describe conv(FS). However, no exact polynomial-time separation algorithm for these

inequalities was known until now. In Section 2.3.3 we describe a linear-time algorithm for

separating the residual capacity inequalities.

For FU , Brockmüller et al. (1996) introduce the c-strong inequalities and characterize

the necessary and sufficient conditions under which the c-strong inequalities are facet-

defining. van Hoesel et al. (2002) study FU when w0 = 0 as well. In Section 2.3.4, we

prove that the c-strong inequalities constitute all facet-defining inequalities of conv(FU )

of the form
∑

k∈K πkyk ≤ π0 + x with integral coefficients. We show that the separation

problem of c-strong inequalities is NP-hard and that it is sufficient to solve this separation

problem over the subspace of fractional variables only. Furthermore, we introduce two

classes of inequalities, both of which include the c-strong inequalities as a special case.

2.3.3 Splittable flow arc set

2.3.3.1 Optimization problem

To motivate the separation problem of the splittable flow arc set FS , we start with the

related optimization problem. Magnanti et al. (1993) state that the optimization of a linear

function over FS can be solved efficiently using an incremental strategy. Here, we present

another simple algorithm, which is also used in Section 2.4 for approximate lifting of valid

inequalities for FU . We consider a maximization problem and without loss of generality

assume that the objective coefficient of the capacity variable x is negative since otherwise

the problem is unbounded. Furthermore, we can assume that this coefficient is −1 by

scaling; i.e., we consider the problem

(SFP) ζ = max{
∑

k∈K

ckyk − x :
∑

k∈K

dkyk ≤ w0 + x, (y, x) ∈ DS}.
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If ck ≤ 0 for some k ∈ K, then given any optimal solution with yk > 0, there exists

another optimal solution that is identical to the former except that yk = 0. Therefore, we

may assume that ck > 0 for all k ∈ K.

Suppose the variables are indexed so that c1

d1 ≥ c2

d2 ≥ · · · ≥ c|K|

d|K| , ties broken arbitrarily.

Let Dk =
∑k

h=1 d
h − w0 for k ∈ K, D0 = −w0, and i be the largest index with ck

dk ≥ 1.

If c1

d1 < 1, then let i = 0. There exists an optimal solution to the LP relaxation of SFP

with all positive yk in the above order and x = Di. Then, by concavity of ζ(x), there

exists an optimal solution (y∗, x∗) to SFP such that x? = bDic or x∗ = dDie. Hence

the computational burden of finding an optimal solution to SFP is sorting the variables

in non-increasing order of ck

dk , which can be done in O(|K| log |K|). We state this as the

following proposition.

Proposition 2.5 The optimization problem SFP can be solved in O(|K| log |K|).

Because of the polynomial equivalence of optimization and separation for a polyhe-

dron (Grötschel et al. 1981), the separation problem of conv(FS) must also be solvable

in polynomial time. Next, we show that conv(FS) can be separated in linear time.

2.3.3.2 Separation problem

For H ⊆ K let ηH = dd(H) − w0e and rH = r(d(H) − w0). Magnanti et al. (1993) show

that for any H ⊆ K the residual capacity inequality

∑

k∈H

dk(1 − yk) ≥ rH(ηH − x) (2.6)

is valid for FS when w0 = 0. Inequality (2.6) is valid for FS when rH = 0 or x ≥ ηH since

yk ≤ 1 for all k ∈ K. It is also valid otherwise, since

∑

k∈H

dk(1 − yk) ≥ d(H) − w0 − x = ηH − (1 − rH) − x

= (1 − rH)(ηH − 1) + rHηH − x

≥ (1 − rH)x+ rHηH − x

= rH(ηH − x).
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The residual capacity inequality can also be viewed as a mixed-integer rounding inequal-

ity from a suitable relaxation of FS (Marchand and Wolsey 2001).

Magnanti et al. (1993) prove that the residual capacity inequalities together with the

constraints of FL are sufficient to describe conv(FS) when w0 = 0. This result extends

trivially to the case w0 6= 0 as well.

Proposition 2.6 (Magnanti et al. (1993)) The residual capacity inequalities along with

the constraints of FL completely describe conv(FS) for all values of w0.

Since the constraints of FL can be checked for violation in linear time, the separation

problem of conv(FS) reduces to either finding a residual capacity inequality violated by

(ȳ, x̄), or concluding that (ȳ, x̄) ∈ conv(FS), given a point (ȳ, x̄) ∈ FL.

Without loss of generality, we may assume that x̄ 6∈ Z. No (ȳ, x̄) ∈ FL with x̄ ∈ Z

violates a residual capacity inequality as residual capacity inequalities are valid for FS .

We therefore look for H ⊆ K such that
∑

k∈H dk(1 − ȳk) < rH(ηH − x̄). We are

interested in only H with rH > 0 and ηH ≥ x̄ + 1. Defining y ∈ {0, 1}|K| to be the

characteristic vector of H, the separation problem can be formulated as

ς = min
∑

k∈K

dk(1 − ȳk)yk − rH(ηH − x̄)

s.t. :
∑

k∈K

dkyk = w0 + (ηH − 1) + rH

0 < rH < 1

x̄+ 1 ≤ ηH , ηH ∈ Z

yk ∈ {0, 1} k ∈ K.

The point (ȳ, x̄) violates the residual capacity inequality corresponding to an optimal

(y, ηH , rH) if ς < 0. Otherwise, (ȳ, x̄) violates no residual capacity inequality. This is

a nonlinear mixed-integer optimization problem, which is hard to solve in general.

Lemma 2.7 A point (ȳ, x̄) ∈ FL does not violate any residual capacity inequality (2.6)

with ηH ≤ x̄ or ηH ≥ x̄+ 1.

Proof See Appendix B.
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From Lemma 2.7, any residual capacity inequality violated by (ȳ, x̄) has ηH = dx̄e.

Since x̄ 6∈ Z, we have bx̄c = ηH − 1. After fixing ηH to dx̄e, the separation problem can be

formulated as a linear mixed-binary optimization problem:

ς = min
∑

k∈K

dk(1 − ȳk)yk − rH(dx̄e − x̄)

s.t. :
∑

k∈K

dkyk = w0 + bx̄c + rH

rH < 1, rH ∈ R++

yk ∈ {0, 1} k ∈ K.

Eliminating the bounded continuous variable rH , we rewrite the separation problem as a

binary problem with two strict inequalities

ς = min
∑

k∈K

dk(1 − ȳk − dx̄e + x̄)yk + (dx̄e − x̄)(w0 + bx̄c)

(SP) s.t. : w0 + bx̄c <
∑

k∈K

dkyk < w0 + dx̄e

yk ∈ {0, 1} k ∈ K.

Next we show that to find a violated residual capacity inequality, it is sufficient to

consider only variables with a negative coefficient in the objective function. Let

T = {k ∈ K : 1 − ȳk < dx̄e − x̄}.

Lemma 2.8 If there exists a residual capacity inequality (2.6) violated by a fractional

point (ȳ, x̄) ∈ FL, then there exists one given by H ⊆ T .

Proof See Appendix B.

Lemma 2.9 If d(T ) ≤ w0 +bx̄c or d(T ) ≥ w0 +dx̄e, then there exists no residual capacity

inequality violated by (ȳ, x̄) ∈ FL.

Proof See Appendix B.

Lemmas 2.7, 2.8, and 2.9 allow us to separate the residual capacity inequalities easily.

Next, we develop a simple procedure that does so. Furthermore, since the residual

capacity inequalities, together with the inequalities of FL, describe conv(FS), the following
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procedure separates (ȳ, x̄) ∈ FL \ FS from conv(FS): If w0 + bx̄c < d(T ) < w0 + dx̄e
∑

k∈T d
k(1− ȳk−dx̄e+ x̄)+(dx̄e− x̄)(w0 +bx̄c) < 0, then the inequality

∑

k∈T d
k(1−yk) ≥

rT (ηT − x) is violated by (ȳ, x̄). Otherwise, there exists no residual capacity inequality

violated by (ȳ, x̄). This procedure can be performed in linear time, and is stated as the

following theorem.

Theorem 2.10 The separation problem for the residual capacity inequalities (2.6) can

be solved in O(|K|).

2.3.4 Unsplittable flow arc set

2.3.4.1 Optimization problem

Even though our ultimate goal is to find strong valid inequalities for the unsplittable flow

arc set FU , it is helpful to study the maximization of a linear function over FU as a first

step.. As for FS we may assume that the objective coefficient of the capacity variable x

is −1 and state the problem as

(UFP) ξ = max{
∑

k∈K

ckyk − x :
∑

k∈K

dkyk ≤ w0 + x, (y, x) ∈ DU}.

UFP is a relaxation of the binary knapsack problem. Below we present properties of

optimal solutions of UFP that will be useful when studying conv(FU ) in Section 2.3.4.3.

Proposition 2.11 states that in any optimal solution (y∗, x∗), the value of x∗ is com-

pletely determined by y∗. Proposition 2.12 characterizes conditions under which the val-

ues of some of the binary y variables can be fixed.

Proposition 2.11 In any optimal solution (y∗, x∗) to UFP, x∗ = d
∑

k∈K dkyk∗ − w0e.

Proof See Appendix B.

Proposition 2.12 UFP has an optimal solution (y?, x?) such that

yk? =











1 if ck ≥ ddke,

0 if ck ≤ bdkc,
for k ∈ K.

Proof See Appendix B.
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From Proposition 2.12, all binary variables except the ones with bdkc < ck < ddke can

be eliminated from UFP since their optimal values can be determined a priori.

Corollary 2.13 UFP can be solved in O(|K|) if either ck ∈ Z or dk ∈ Z for all k ∈ K.

Theorem 2.14 UFP is NP-hard for any fixed value of w0.

Proof See Appendix B.

Remark 2.15 Theorem 2.14 states that UFP remains NP-hard for any fixed value of

w0. In Section 2.3.4.3 we will see that w0 may take on negative values in the separation

problem of c-strong inequalities.

Now we present a canonical form of UFP. Without loss of generality, we assume that

bdkc < ck < ddke for all k ∈ K, since all other variables can be eliminated from the

problem by Proposition 2.12. We can further simplify the problem such that the data

consists of only the fractional parts of dk and ck. For k ∈ K let fk = r(dk) = dk − bdkc

and gk = r(ck) = ck − bckc. Now, let f0 = w0 − bw0c and define

(UFPf ) ξf = max{
∑

k∈K

gkyk − x :
∑

k∈K

fkyk ≤ f0 + x, (y, x) ∈ DU}.

Proposition 2.16 UFPf is related to UFP in the sense that H ⊆ K maximizes UFP if

and only if H maximizes UFPf . Furthermore, ξf = ξ − bw0c.

Proof See Appendix B.

Proposition 2.16 allows us to study UFPf instead of UFP.

2.3.4.2 Optimization algorithm

Next, we present a pseudo-polynomial algorithm for solving UFPf , which is used to show

strongly polynomial-time lifting of a subclass of the lifted knapsack cover inequalities in

Theorem 2.29. Let λ be a common multiple of the denominators of the rational numbers

fk, k ∈ [0, |K|]. By multiplying fk by λ, the constraint of UFPf can be written with only

integral coefficients. Since fk < 1, x can be at most df(K) − f 0e ≤ |K| in any optimal

solution to UFPf . For ν ∈ [0, df(K) − f0e], consider an optimal solution y? to the binary
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knapsack problem

(KP1(ν)) ς(ν) = max{
∑

k∈K

gkyk :
∑

k∈K

λfkyk ≤ λ(f0 + ν), y ∈ {0, 1}|K|}.

Since gk > 0 and fk < 1 for all k ∈ K, we have λf0 +λ(ν−1) <
∑

k∈K λfky?
k ≤ λf0 +λν.

Hence, ξf = maxν∈[0,df(K)−f0e]{ς(ν) − ν}. There are at most |K| + 1 of these related

knapsack problems. They can be solved in a total of O(λ|K|2) by dynamic programming,

since we complete the computations required for solving KP1(ν) for all ν ∈ [0, |K| − 1]

when solving KP1(|K|). Alternatively, let µ be a common multiple of the denominators of

the fractional numbers gk, k ∈ [1, |K|]. Instead of solving KP1(ν), we may solve the dual

knapsack problem

(KP2(t)) ω(t) = min{
∑

k∈K

fkyk :
∑

k∈K

µgkyk ≥ t, y ∈ {0, 1}|K|}.

so that ς(ν) = ω(t) if ω(t) ≤ λ(f 0 +ν) < ω(t+1). Since KP2(t) is infeasible for t ≥ µ|K| >

µg(K), ς(ν) for all ν ∈ [0, |K|] can be computed in O(µ|K|2). Thus, we have proved the

following theorem about the complexity of UFP.

Theorem 2.17 UFP can be solved in O(min{λ, µ}|K|2).

2.3.4.3 Valid inequalities

In Section 2.3.4.3, we discuss three classes of valid inequalities for FU . The first class

is the c-strong inequalities introduced by Brockmüller et al. (1996). The next two classes

are new and both of them subsume the c-strong inequalities. Before describing specific

valid inequalities, we present some general properties of conv(FU ) that will be useful in

the analysis. First, the convex hull of FU , conv(FU ), is full-dimensional and inequalities

yk ≥ 0 and yk ≤ 1 for all k ∈ K are facet-defining for conv(FU ). We call these inequalities

the trivial valid inequalities of conv(FU ). Next, we provide bounds on the coefficients of

non-trivial facet-defining valid inequalities of conv(FU ).

Proposition 2.18 (Atamtürk and Rajan (2002), van Hoesel et al. (2002)) Any non-

trivial facet-defining inequality
∑

k∈K πkyk ≤ π0 + x of conv(FU ) has bdkc ≤ πk ≤ ddke for

all k ∈ K and π0 = max{
∑

k∈K πkyk − x : (y, x) ∈ FU}.
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In terms of the fractional components of d and w0, we define the set

FUf = {(y, x) ∈ DU :
∑

k∈K

fkyk ≤ f0 + x}.

The following proposition follows trivially from Propositions 2.16 and 2.18.

Proposition 2.19 An inequality
∑

k∈K πkyk ≤ π0 + x with bdkc ≤ πk ≤ ddke is valid for

FU if and only if
∑

k∈K(πk − bπkc)yk ≤ π0 − bw0c + x is valid for FUf .

Proof See Appendix B.

Remark 2.20 From Proposition 2.18 when looking for strong valid inequalities for FU ,

we can restrict our attention to inequalities
∑

k∈K πkyk ≤ π0 + x with bdkc ≤ πk ≤ ddke

for all k ∈ K. But then, from Proposition 2.19, instead of working with FU , we can work

with FUf defined using the fractional parts of the data.

From Propositions 2.18 and 2.19, we assume that 0 < dk < 1 for all k ∈ K and

0 ≤ w0 < 1; so FU = FUf for the rest of Chapter 2. Consequently, from Proposition 2.18,

0 ≤ πk ≤ 1 for all k ∈ K for all non-trivial facet-defining inequalities of conv(FU ).

2.3.4.3.1 c-strong inequalities

For H ⊆ K let cH = |H| − dd(H) − w0e. H is said to be maximal c-strong if cH\{i} = cH

for all k ∈ H and cH∪{i} = cH + 1 for all k ∈ K \H. Brockmüller et al. (1996) show that

for any H ⊆ K the c-strong inequality

∑

k∈H

yk ≤ cH + x (2.7)

is valid for FU when w0 = 0. A c-strong inequality is facet-defining for conv(FU ) if and

only if H is maximal c-strong.

Theorem 2.21 The maximal c-strong inequalities (2.7) constitute all facet-defining in-

equalities
∑

k∈K πkyk ≤ π0 + x of conv(FU ) with integral πk, k ∈ [0, |K|].

Proof See Appendix B.

There might be other facet-defining inequalities of FU . In fact, we present a facet-

defining inequality
∑

k∈K πkyk ≤ π0 + x of conv(FU ) with fractional coefficients in Sec-
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tion 2.3.4.3.4. We now discuss the separation problem for the c-strong inequalities. Given

a point (ȳ, x̄), there exists a c-strong inequality violated by (ȳ, x̄) if and only if there exists

H ⊆ K such that
∑

k∈H ȳk − cH > x̄. Let λ be the least common multiple of the denom-

inators of the rational numbers (1 − dk) and w0. Then, a c-strong inequality is violated if

and only if

max
H⊆K

{
∑

k∈H

ȳk−bw0 +
∑

k∈H

(1 − dk)c}

= max{
∑

k∈K

ȳkyk − x :
∑

k∈K

(1 − dk)yk + w0 + 1/λ ≤ x, (y, x) ∈ DU} + 1

> x̄.

From Theorem 2.14, this maximization problem with the constant term −w0 − 1/λ is

NP-hard. Although the separation problem of c-strong inequalities is NP-hard, from

Proposition 2.12, it has an optimal solution (y∗, x∗) such that y∗k = 1 if ȳk = 1, and y∗k = 0

if ȳk = 0.

Therefore, we can fix such variables to their optimal values and solve the separation

problem over k ∈ K such that 0 < ȳk < 1, which in practice can be done very efficiently

even by enumeration, as most variables take on values either 0 or 1 in the LP relaxations

of network design problems. Proposition 2.4 provides insight as to why this is true.

2.3.4.3.2 j-split c-strong inequalities

In Section 2.3.4.3.2, we describe new valid inequalities for FU , motivated by Proposi-

tion 2.12. An inequality
∑

k∈K πkyk ≤ π0+x is valid for FU if and only if max{
∑

k∈K πkyk−

x : (y, x) ∈ FU} ≤ π0. As shown in Section 2.3.4.1, solving this maximization problem is

NP-hard. However, if the maximum of
∑

k∈K πkyk − x over a suitable relaxation of FU is

no more than π0, then we can deduce that
∑

k∈K πkyk ≤ π0 +x is valid for this relaxation

and hence for FU .

The relaxation of FU that we consider for this purpose is obtained by splitting the

integer capacity variable. In a j-split relaxation, the capacity variable x is allowed to

take values that are integer multiples of 1/j, where j is a positive integer. Let F j
U =
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{
∑

k∈K dkyk ≤ w0 + z/j, (y, z) ∈ DU}. We define an infinite set of relaxations for FU with

conv(F1
U ) = conv(FU ) and limj→∞ conv(F j

U ) = FL. The last equation follows from the

fact that y ∈ {0, 1}|K| for all extreme points (y, x) of FL.

For a given instance of FU , there exists a finite j for which jck ≤ bjdkc if ck ≤ dk

and jck ≥ djdke if ck ≥ dk for all k ∈ K. Thus, From Proposition 2.12, there exists a j-

split relaxation of FU , for which the optimization problem is trivial to solve, and hence the

validity of a given inequality
∑

k∈K πkyk ≤ π0+x can be checked easily for this relaxation.

Alternatively, for each j, we can define an inequality that can be easily verified to be valid

for the corresponding j-split relaxation.

Proposition 2.22 Let H = {k ∈ K : πk ≥ djdke}. Any inequality
∑

k∈K πkyk ≤ π0 + jx

with j ∈ Z++ and πk ≤ bjdkc or πk ≥ djdke for all k ∈ K is valid for FU for π0 =

π(H) − djd(H) − jw0e.

Proof See Appendix B.

Thus, for any positive integer j and any H ⊆ K, we can define strong valid inequal-

ities by letting πk equal either bjdkc or djdke, for all k ∈ K. Let cjH =
∑

k∈Hdjdke −

djd(H) − jw0e and define the j-split c-strong inequality as

∑

k∈H

djdkeyk +
∑

k∈K\H

bjdkcyk ≤ cjH + jx. (2.8)

A j-split c-strong inequality (2.8) is a c-strong inequality for F j
U . Since F j

U is a re-

laxation of FU , a necessary condition for inequality (2.8) to be facet-defining for FU is

that H is maximal c-strong in the j-split relaxation F j
U . In Proposition 2.23, we present

a sufficient condition for a j-split c-strong inequality to be facet-defining for FU . As the

example in Section 2.3.4.3.4 illustrates, j-split c-strong inequalities may be facet-defining

more generally.

Proposition 2.23 Let fH = r(d(H) − w0) = d(H) − w0 − bd(H) − w0c. Inequality

(2.8) is facet-defining for conv(FU ) if either H is maximal c-strong in the j-split relaxation;

fH > (j − 1)/j and w0 ≥ 0; or dk > fH for all k ∈ H and dk < 1 − fH for all k ∈ K \H.

Proof See Appendix B.
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2.3.4.3.3 Lifted knapsack cover inequalities

Let K0 and K1 be two disjoint subsets of K and ν be a non-negative integer. Consider

the binary knapsack set FU (ν,K0,K1) obtained by projecting the capacity variable x to ν,

all binary variables indexed with K0 to 0 and all binary variables indexed with K1 to 1, i.e.,

FU (ν,K0,K1) = {(y, x) ∈ FU : x = ν, yk = 0 for all k ∈ K0 and yk = 1 for all k ∈ K1}.

Definition 2.24 Let C = K \ (K0 ∪ K1). Then, the set C is called a cover if λ =

d(C) + d(K1) − w0 − ν > 0. C is said to be a minimal cover if dk ≥ λ for all k ∈ C.

For any cover C, the knapsack cover inequality
∑

k∈C y
k ≤ |C|−1 is facet-defining for

conv(FU (ν,K0,K1)) if and only if C is a minimal cover (Nemhauser and Wolsey 1988). By

lifting the knapsack cover inequalities of minimal covers with the projected variables, one

can obtain facet-defining inequalities of conv(FU ), see Section 1.5.2 for an introduction

to lifting.

One practical way of lifting inequalities is sequential lifting, in which projected vari-

ables are introduced to an inequality one at a time in some sequence. van Hoesel et al.

(2002) have independently lifted knapsack cover inequalities to also describe strong valid

inequalities for FU . Here we show that given a minimal cover, a lifted knapsack cover

inequality can be constructed in O(|K|3) if the capacity variable x is lifted first. We further

show that inequalities obtained in this manner subsume all c-strong inequalities.

Now, we describe the lifting procedure. We introduce the capacity variable x to the

cover inequality first. Let FU (K0,K1) = {(y, x) ∈ FU : yk = 0 for all k ∈ K0 and yk =

1 for all k ∈ K1} and C be a cover. Inequality
∑

k∈C y
k + α(ν − x) ≤ |C| − 1 is valid for

FU (K0,K1) if and only if

α ≤ α = min

{

|C| − 1 −
∑

k∈C y
k

ν − x
: x < ν, (y, x) ∈ FU (K0,K1)

}

,

and

α ≥ α = max

{

∑

k∈C y
k − |C| + 1

x− ν
: x > ν, (y, x) ∈ FU (K0,K1)

}

.

If C is a minimal cover and α equals either α or α, then
∑

k∈C y
k + α(ν − x) ≤ |C| − 1 is

facet-defining for conv(FU (K0,K1)), which follows from Wolsey (1976). The existence of
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a valid lifting coefficient α follows from the next proposition.

Proposition 2.25 (Atamtürk and Rajan (2002), van Hoesel et al. (2002)) For any cover

C, α ≤ 1 ≤ α holds.

Proof See Appendix B.

For any cover, α = 1/(dd(C) + d(K1)−w0e − ν) = 1/dλe, which is computed in linear

time For a minimal cover C, since 0 < λ ≤ dk < 1, we have α = 1. The upper bound α

can be computed efficiently as well: Suppose d1 ≤ d2 ≤ · · · ≤ d|C|. Let D0 = d(K1) − w0

and Dk = Dk−1 + dk for k ∈ [1, |C|]. Since the coefficients in the cover inequality are the

same, we have

α = min
k∈[0,|C|−2]

{

|C| − 1 − k

ν − dDke
: dDke < ν

}

.

Therefore α is computed by selecting the minimum of at most |C| − 1 terms after sorting

dk, k ∈ C in non-decreasing order, which can be done in O(|K| log |K|).

Next, we introduce the projected binary variables to the inequality
∑

k∈C y
k + α(ν −

x) ≤ |C| − 1 one at a time in some arbitrary sequence. As shown in the example in

Section 2.3.4.3.4, different sequences may lead to different lifted inequalities. Let L0 ⊆

K0 and L1 ⊆ K1 be the index sets of variables that have already been lifting and the

current lifted inequality be

∑

k∈C

yk +
∑

k∈L0

αkyk +
∑

k∈L1

αk(1 − yk) + α(ν − x) ≤ |C| − 1. (2.9)

Then the lifting coefficient of a variable yi, i ∈ (K0 \L0)∪(K1 \L1) is computed by solving

the lifting problem

αi = |C| − 1 − max
∑

k∈C

yk +
∑

k∈L0

αkyk +
∑

k∈L1

αk(1 − yk) + α(ν − x)

(BLP ) s.t. :
∑

k∈C∪L0∪L1

dkyk ≤ w0 − d(K1 \ L1) ∓ di + x (2.10)

yk ∈ {0, 1} k ∈ C ∪ L0 ∪ L1

x ∈ Z.

In the right hand side of the constraint (2.10), we have −di if i ∈ K0 and +di if i ∈ K1.
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Proposition 2.26 The maximal c-strong inequalities are equivalent to the lifted minimal

cover inequalities with α = α.

Proof See Appendix B.

Remark 2.27 The proof of Proposition 2.26 also shows that projecting binary variables

to 1 does not lead to new inequalities when α is used as the lifting coefficient for the ca-

pacity variable. This is because by Proposition 2.26 and Theorem 2.21, all facet-defining

inequalities
∑

k∈K πkyk ≤ π0 + x of conv(FU ) with integer coefficients can be obtained

by lifting minimal cover inequalities using α = α and K1 = ∅. On the other hand, letting

K1 6= ∅ does not lead to fractional lifting coefficients. So when α = α, the lifted minimal

cover inequalities take the simple form
∑

k∈C y
k ≤ |C| − 1 − ν + x = cC + x.

Lemma 2.28 If C is a minimal cover and α = α, then the lifting coefficients of inequality

(2.9) satisfy αk ≤ |C| − 1 for all k ∈ K0 and −αk ≤ |C| − 1 for all k ∈ K1.

Proof See Appendix B.

Theorem 2.29 For a minimal cover, a lifted knapsack cover inequality with α=α can be

constructed in O(|K|3).

Proof See Appendix B.

Remark 2.30 For the binary knapsack set, Zemel (1989) presents an O(|K|2) algorithm

to compute the lifting coefficients of the minimal cover inequality when K1 = ∅. However,

no polynomial-time algorithm is known for constructing a lifted cover inequality for the

binary knapsack set if some of the variables are projected to 1, i.e., K1 6= ∅. For the

binary knapsack set, Gu et al. (1994) present an example where the lifting coefficients are

bounded from below by an exponential function of n. In the case of the unsplittable flow

arc set FU , we are able to bound the coefficients of the lifted knapsack cover inequality

from above by |K| in Lemma 2.28 by lifting the integer capacity variable y first.

2.3.4.3.4 Illustrative example

Let FU = {(y, x) ∈ {0, 1}5 × Z : 1
3y1 + 1

3y2 + 1
3y3 + 1

2y4 + 2
3y5 ≤ x}. In Table 2.1, we list

the lifted knapsack cover inequalities of FU that are not c-strong inequalities. They are

43



www.manaraa.com

all the facet-defining inequalities that can be obtained by the lifting procedure described

in Section 2.3.4.3.3 for minimal cover inequalities.

Table 2.1: Lifted knapsack cover inequalities: A small example

ν (C,K0,K1) inequalities

1 ({2, 3, 4}, {1, 5}, ∅) y2 + y3 + y4 + y5 ≤ 2x
1 ({1, 4, 5}, {2, 3}, ∅) y1 + y2 + y4 + y5 ≤ 2x and y1 + y3 + y4 + y5 ≤ 2x
2 ({1, 2, 3, 4}, ∅, {5}) y1 + y2 + y3 + y4 + 2y5 ≤ 2x+ 1
2 ({1, 2, 3, 5}, ∅, {4}) y1 + y2 + y3 + 2y4 + y5 ≤ 2x+ 1

The last two inequalities can only be obtained by lifting cover inequalities (including

non-minimal covers) where K1 6= ∅. Thus, this example illustrates that with α = α, pro-

jecting binary variables to 1 does lead to inequalities that can not be obtained otherwise

by the lifting of minimal cover inequalities.

Except the last inequality, all the inequalities above are also 2-split c-strong inequali-

ties. The 3-split c-strong inequality y1 + y2 + y3 + 2y4 + 2y5 ≤ 3x with H = {1, 2, 3, 4, 5},

which is facet-defining for conv(FU ) can not be obtained by lifting any cover, not nec-

essary minimal. This example shows that the j-split c-strong inequalities and the lifted

knapsack cover inequalities are indeed different classes of inequalities.

2.4 Computational results

To empirically test the effectiveness of the results in the preceding sections on network

design arc sets, we develop a branch-and-cut algorithm for solving the NDP; implemented

using CPLEX2 callable library (version 6.5.1). The branch-and-cut algorithm generates

cutting planes from the splittable and unsplittable arc sets. We also add certain families

of cut-set inequalities to the formulation, as discussed shortly. We do all computations

on a Sun Ultra 5 workstation with a one hour time limit, and using a best-bound node

selection strategy in the branch-and-bound search tree.

We base our data set on the unsplittable multi-commodity flow problem instances

used in Barnhart et al. (2000). In these instances, capacity is fixed and demand for com-

2CPLEX is a trademark of ILOG, Inc.
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modities ranges between 5 and 60. We create four sets of capacitated network design

problems by introducing capacity variables with unit capacities 4, 25, 60, and 120 and unit

installation costs 50, 250, 450, and 720, respectively. We report on our computations with

5 problems that CPLEX has the most difficulty in solving. These problem instances are

available at http://ieor.berkeley.edu/∼atamturk/data; we summarize their basic properties

in Table 2.2.

Table 2.2: Problem instance sizes

problem commodities nodes arcs
variables

constraintsflow capacity

1 70 29 132 8540 61 2181
2 58 18 58 3364 29 1120
3 93 27 74 7178 37 2612
4 87 24 84 7308 42 2196
5 81 27 72 5832 36 2284

Cut-set inequalities (see Section 2.2) are known to improve the LP relaxations of

network design problems; however, their separation problem is NP-hard. Therefore,

before solving the problems, we add the cut-set inequalities defined for one and two-

node subsets of the network to the formulations, and use these formulations as the basis

for our comparisons for the arc-set polyhedra. The We can significantly improve the

performance of the cut-set inequalities by a more effective heuristic scheme, see Günlük

(1999) for some ideas. However, we are more concerned with the performance of the

arc-set inequalities developed in Section 2.3.

2.4.1 Experiments with splittable flow problems

The first set of experiments tests the effectiveness of the exact separation algorithm for

the residual capacity inequalities described in Section 2.3.3.2. Since these inequalities

are developed for splittable flow network design problems, we relax the binary flow vari-

ables of our data set to continuous variables for these experiments.

Table 2.3 summarizes the computations with the branch-and-cut algorithm using

residual capacity inequalities. In this table, for each problem (problem) and capacity (ca-
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pacity) combination, we report the number of residual capacity inequalities added (cuts),

percentage improvement in the integrality gap obtained by the cuts at the root node of the

search tree (root improvement), and the number of nodes evaluated in the search tree

(b&b nodes). Let zprep be the objective value of the LP relaxation after pre-processing,

zroot the value of the LP relaxation at the root node before branching, and zub the value

of the best feasible solution known for an instance. Then, the root improvement is cal-

culated as 100 × zroot−zprep
zub−zprep . We also report the elapsed CPU time in seconds (time) or

percentage gap between the best upper bound and the best lower bound at termination

if the time limit is reached (endgap). Since we report either time or the integrality gap

at termination for each instance, we present them in the same column. To distinguish

between them, we report the integrality gap at termination in parenthesis, and follow this

convention throughout this dissertation.

Table 2.3: Computational results with splittable flow arc sets

root improvement b&b nodes time (endgap)
capacity problem cuts

(1) (2) (1) (2) (1) (2)

1 20 35.7 44.3 27630 22310 (0.1) (0.1)
2 17 25.8 43.2 6040 2918 177.4 85.9

4 3 12 48.9 62.3 15736 17720 437.5 435.3
4 24 81.8 81.8 29683 23282 (0.0) (0.0)
5 17 47.3 80.7 1052 1172 38.5 41.4
1 80 37.7 56.2 6858 2929 (0.8) (0.8)
2 68 44.9 61.3 5840 2967 266.7 277.4

25 3 31 63.1 75.2 7177 5476 206.4 157.5
4 57 56.9 59.3 9554 7441 (0.7) (0.2)
5 29 32.3 68.6 9037 8384 285.4 260.4
1 262 17.0 55.1 5403 967 (3.9) (2.7)
2 206 19.2 58.5 1788 483 133.6 161.5

60 3 114 59.8 72.4 7753 5893 245.6 224.5
4 257 22.4 55.3 8250 1832 (1.6) (1.4)
5 77 48.7 79.5 2166 1047 78.8 49.5
1 625 23.2 52.1 3650 363 (17.9) (13.8)
2 500 26.4 58.1 39465 9662 2118 3411

120 3 340 66.3 83.7 797 626 39.2 38.4
4 629 12.9 47.6 6665 624 (10.8) (7.4)
5 209 55.4 75.9 1056 1616 52.4 78.4

(1) base formulation, (2) residual capacity inequalities.
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To reflect the improvement obtained by the cut-set inequalities as well, we use the

zprep values of formulations before adding the cut-set inequalities. In all tables, columns

with heading (1) show the performance of the branch-and-bound algorithm for the base

formulation that includes the cut-set inequalities.

In any branch-and-cut algorithm, the frequency of applying a separation routine in the

search tree has an important effect on the computations. In this experiment, we run the

separation routine for the residual capacity inequalities only at the root node. We base

this choice on our observation that most of the effective cuts are found at the root node of

the search tree. We see that a large number of cuts are added compared to the number

of arcs in the problems and the number of cuts added increases with the capacity.

On average, the cut-set inequalities reduce the integrality gap at the root node by 41%.

On the other hand, the addition of residual capacity inequalities reduces the integrality

gap at the root node significantly (64%), and for almost all problems decreases the total

number of nodes evaluated. For the problems that are not solved within the time limit, the

integrality gap at termination is smaller for all of the problems when we add the residual

capacity inequalities. Thus, we see that the residual capacity inequalities are effective in

solving splittable network design problems.

Since the residual capacity inequalities describe the convex hull of the splittable arc

sets FS and we use an exact algorithm to separate them, the integrality gap improvement

shown under heading (2) of Table 2.3 is the best that can be achieved by using cutting

planes from individual arc sets for these instances.

2.4.2 Experiments with unsplittable flow problems

The second set of experiments is on the unsplittable flow network design problem. First,

we test the impact of the inequalities described in Section 2.3.4 in reducing the integrality

gap at the root node of the search tree. Under headings (2), (3), and (4) of Table 2.4,

we report the number of cuts added (cuts) and the integrality gap improvement at the

root node (impr) for c-strong inequalities, j-split c-strong inequalities, and lifted knapsack

cover inequalities, respectively. As in Table 2.3, we use zprep values of formulations
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before adding the cut-set inequalities to calculate the improvement at the root node so

that the improvement from these cuts can be compared with the improvement obtained

by cut-set inequalities, shown under heading (1) of Table 2.4.

Table 2.4: Root integrality gap improvement with unsplittable flow sets

capacity problem
(1) (2) (3) (4)

impr cuts impr cuts impr cuts impr

1 4.3 161 53.8 358 55.2 140 54.1
2 6.4 74 69.2 153 72.6 63 70.7

4 3 37.7 70 79.6 137 83.6 70 56.6
4 9.8 157 42.4 324 44.5 143 43.0
5 38.4 52 82.9 77 88.4 44 84.5
1 0.00 270 32.2 633 34.6 225 32.7
2 22.8 119 57.4 385 64.6 106 62.1

25 3 54.2 84 62.0 218 63.6 79 62.0
4 0.00 204 12.8 531 14.4 165 13.2
5 17.2 126 54.1 218 56.3 115 54.1
1 4.7 317 25.7 854 28.4 297 26.9
2 14.0 185 44.5 462 48.0 153 47.7

60 3 53.7 153 61.2 355 61.6 127 61.1
4 0.6 267 17.5 683 19.7 203 19.0
5 38.0 201 68.5 431 69.3 196 68.6
1 9.4 486 30.7 1291 31.2 438 30.7
2 28.0 379 52.8 809 51.6 301 52.7

120 3 62.0 420 71.1 732 71.6 316 71.4
4 2.4 531 39.3 1094 39.7 437 38.9
5 35.5 539 63.0 746 63.3 498 63.0

(1) base formulation, (2) c-strong inequalities,
(3) j-split c-strong inequalities, (4) lifted knapsack cover inequalities.

To find violated c-strong inequalities, given a fractional point (ȳ, x̄), we use the fact

that there exists an optimal solution H? to the separation problem such that k ∈ H? if

ȳk = 1 and k ∈ K \ H? if ȳk = 0. Therefore, after fixing the variables with integral LP

values, for each potential value of cH , we choose the elements of H in non-decreasing

order of ȳkdk in a greedy fashion for all other variables. In the separation problem, usually

more than 90% of the variables are fixed by the optimality criteria of Proposition 2.12. We

use a greedy heuristic to separate the knapsack cover inequalities (Gu et al. 1998) after

letting ν = dx̄e.

When lifting the knapsack cover inequalities, we let the lifting coefficient of the capac-
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ity variable α = α, since c-strong inequalities correspond to lifted cover inequalities with

α = α. To find the lifting coefficients for the projected binary variables, rather than solv-

ing the lifting problems exactly, we solve their splittable relaxation as described in Sec-

tion 2.3.3.1. To generate j-split c-strong cuts, we use the separation routine for c-strong

inequalities, after multiplying the coefficients of the arc-set inequality by k. A preliminary

test showed that the quality of j-split c-strong cuts degrade for high values of j, especially

for j > 4. Therefore, in these computations, we set the maximum value of j to 4 for all

our reported computations.

Comparing headings (3) and (4) with (2), although a good number of lifted knapsack

cover and j-split c-strong cuts are generated, further improvement of the integrality gap

is limited. The root improvement is slightly better with j-split c-strong inequalities for most

of the instances.

We generate a lifted knapsack cover inequality in two steps: we find a violated knap-

sack cover inequality and then lift the projected variables. Even though it is a heuristic, the

one step separation routine for the j-split c-strong inequalities may find more cuts than

the knapsack cover separation that does not take into account the lifting coefficients.

Next, we compare the overall performance of the branch-and-cut algorithm for c-

strong cuts; for j-split c-strong cuts with 1 ≤ j ≤ 4; and for all cuts, including the lifted

knapsack covers; see Table 2.5. For each capacity (cap) and problem (problem) com-

bination, we report the number of nodes evaluated (b&b nodes), and elapsed CPU time

in seconds (time) or percentage gap between the best known upper bound and the best

lower bound at termination if the time limit is reached (endgap).

In the separation routine for j-split c-strong inequalities, for each arc we increase the

value of j only if no cut is found with the current value. Separation routines are run in the

first 50 nodes, which correspond to nodes that are high in the search tree, because we

use a best-bound node selection strategy.

Comparing columns with headings (1) and (2) we see that generating c-strong cuts

reduces the number of nodes and the overall CPU time significantly; we solve twelve

instances to optimality, as opposed to seven. Generating j-split c-strong inequalities
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Table 2.5: Computational results with unsplittable flow arc sets

b&b nodes time (endgap)
cap problem

(1) (2) (3) (4) (1) (2) (3) (4)

1 18536 4269 2521 2282 (2.4) (1.0) (1.0) (0.9)
2 61101 757 458 494 (1.4) 133.8 93.4 117.1

4 3 78659 40359 18723 16898 (0.3) 1701 819.2 728.0
4 17494 5273 7572 5585 (1.6) (1.0) (1.2) (1.1)
5 99686 3345 936 1318 (0.1) 160.0 56.8 72.1
1 11283 2084 1351 1268 (12.7) (9.5) (9.3) (9.3)
2 43535 6791 2362 5396 (8.6) 2838 1767 (0.0)

25 3 71023 2399 4877 1896 2687 133.4 268.9 125.1
4 14798 2469 1191 1392 (8.8) (7.9) (7.8) (7.9)
5 95088 32464 28679 21012 (0.1) 1832 (0.1) 1878
1 9949 4154 2561 1817 (26.8) (25.5) (25.0) (24.8)
2 12008 5050 7902 6246 842.9 1397 1835 1890

60 3 9400 9062 6632 6050 330.1 403.4 293.6 288.6
4 12050 6043 2952 2653 (11.2) (11.3) (11.1) (10.7)
5 7210 2533 4208 1935 256.8 134.3 202.4 106.4
1 4869 968 932 720 (27.2) (24.6) (24.7) (24.9)
2 19082 12431 13208 16321 1147 2878 2371 (0.1)

120 3 835 680 606 570 42.8 60.0 53.0 67.3
4 6261 1128 1817 1332 (14.7) (10.0) (8.8) (9.5)
5 22827 2511 2888 2820 933.2 149.0 189.9 151.9

(1) base formulation, (2) c-strong inequalities,
(3) j-split c-strong inequalities, (4) all inequalities.

and lifted knapsack cover inequalities in addition to c-strong inequalities has a positive

effect; no further instances are solved to optimality, but the CPU time and integrality gap

at termination usually reduce. Thus, the additional improvement is not as significant as

adding c-strong inequalities to the base formulation.

2.5 Conclusions

Based on these experimental results, we see that the residual capacity inequalities and

the c-strong inequalities reduce the integrality gap at the root node, and solve the NDP

more effectively. The new classes of inequalities improve the performance of the algo-

rithm further, but not significantly.

Thus, we conclude that inequalities from the arc and cut sets of the NDP strengthen
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the LP relaxations and improving the performance of LP based search algorithms. In par-

ticular, the residual capacity inequalities and the cut-set inequalities reduce the integrality

gap at the root node by 64% for the splittable flow problems. For unsplittable flow, cut-

set inequalities and the c-strong inequalities reduce the integrality gap at the root node

by 51%, on average. However, inequalities that capture additional structures of the net-

work design problems seem to be necessary for solving them more effectively. One such

class of inequalities are the metric inequalities which generalize the cut-set inequalities.

In Chapter 6, we develop these inequalities in the context of survivable network design

problems. Alternatively, one can use problem-independent inequalities derived from the

mixed-integer knapsack set, see Chapter 7.

For the splittable flow problems, the exact separation algorithm for residual capac-

ity inequalities empirically provides the maximum possible integrality gap improvements

at the root node based on inequalities from arc sets. This is because the residual ca-

pacity inequalities completely describe the convex hull of the splittable flow arc set. To

know the value of the maximum possible improvement that can be obtained by using in-

equalities from arc sets for the unsplittable flow problems, we can solve LP relaxations of

Dantzig-Wolfe reformulations of the unsplittable flow network design problem by relaxing

the demand constraints. This LP relaxation can be solved by generating columns over

the pricing sub-problems consisting of individual arc sets with the dynamic programming

algorithm given in Section 2.3.4.1.

In subsequent chapters, we discuss various techniques for ensuring survivability, and

present new frameworks for survivability that uses directed cycles. We study the arc-

set and cut-set polyhedra of the mixed-integer formulations for these methodologies, and

develop strong valid inequalities for such polyhedra.
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Chapter 3

Models for designing survivable

networks

3.1 Introduction

Network design problems become much more complicated when the networks have to

be designed to survive failures. A network is said to be survivable if flow of commodities

disrupted by the failure (removal) of some of the elements of the graph can be rerouted.

Existence of two edge-disjoint paths between every pair of source and destination nodes

(two-edge connectedness) is a necessary condition for survivability of the network, but is

not sufficient.

To ensure that the flow on the network can be rerouted in case of a failure, sufficient

spare capacity must be available on the working edges of the network. Several heuristic

and exact approaches have been developed for designing survivable networks; Soriano

et al. (1998) presents an excellent overview of survivable network design problems and

a synthesis of related literature.

Since over-provisioning of capacity is undesirable due to the high capacity instal-

lation cost, designing capacity-efficient survivable networks is a critical problem in the

telecommunications industry. The most capacity-efficient networks can be designed by

formulating the problem as capacitated network design problems (NDPs) for each failure
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scenario, but linked by common integral capacity variables. In fact, this is global rerouting

(GNP), discussed in Section 3.3.1. Although global rerouting is not implemented in prac-

tice, we use it as a benchmark to measure the capacity efficiency of other frameworks.

One reason why GNP is not implemented is that solutions with minimal changes to no-

failure flow are preferred because it is undesirable in practice to manipulate unaffected

flow while restoring affected flows. A number of practical models and strategies have

been developed for designing survivable networks that admit local rerouting of flow on

a failed edge (Altinkemer 1994, Xiong and Mason 1999, Balakrishnan et al. 2002, Gold-

schmidt et al. 2003). Any framework, whether dedicated protection, shared protection or

a hybrid, can include methodologies that implement local rerouting.

Failures affecting a large number of network elements at the same time are generally

considered improbable; we define a restricted set of failures for which the network will

need to be survivable. We include the no-failure state in the set of failure states, and

define a failure state as the set of edges that fail simultaneously. An edge failure is the

event of decreasing the capacity of the edge to 0. Using this definition of failure states, a

node failure is a failure state that includes all the edges incident to the node.

We focus on single-edge failures. A node failure can be modeled a single-edge failure

by splitting the node into two pseudo-nodes connected by a pseudo-edge. Denoting the

no-failure state by {0}, the set of failures S = E ∪ {0} for single-edge failures. If the set

of failure states has one element (no-failure state), then the survivable network design

problem reduces to the NDP.

Definition 3.1 Survivable network design problem (SNP): Given a directed network, flow

costs, capacity installation costs for each edge, a set of commodities (given in terms of

their origin-destination pairs and demands), and a set of failure states, we wish to route

the commodities so that the net flow on any arc for any failure state is at most the capacity

installed on that edge and all demands are met in all failure states, at minimum total flow

routing (under no failure) and capacity installation costs.

For the rest of this dissertation, we shall present the splittable flow versions of all

formulations. Unless mentioned otherwise, these formulations can be easily modified to
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the unsplittable case by enforcing the flow variables y to be binary.

We distinguish SNP from the uncapacitated survivable network design problem. In

the uncapacitated problem, the demand quantities associated with the commodities are

integral. A often studied special case of this uncapacitated problem is defined as follows.

Definition 3.2 Network design problem with connectivity requirements (NDC): Given an

undirected graph, flow costs on the edges, a set of commodities (given in terms of their

origin-destination pairs and number of edge-disjoint paths required), we wish to route the

commodities such that the connectivity requirements are met, at minimum flow cost.

For comprehensive reviews of research on the NDC and its specializations, see Frank

(1994), Grötschel et al. (1995), and Raghavan and Magnanti (1997).

Global rerouting shared protection, which provides the most capacity-efficient sur-

vivable networks, is extremely difficult to solve, often more so than NDP by an order of

magnitude for the same network instance. In recent years, SNP has received consider-

able attention from both electrical engineering/computer science (EECS) and operations

research (OR) communities. Most of the work has focused on the development of pow-

erful heuristic techniques; see Herzberg et al. (1995), Balakrishnan et al. (1998), and

Luss et al. (1998) for some examples. Others have developed cutting-plane algorithms

(Alevras et al. 1998, Dahl and Stoer 1998, Bienstock and Muratore 2000).

In practice, to make a telecommunications network survivable, one uses either of the

following two different strategies: protection or restoration. Protection techniques com-

pletely identify ahead of time the routes that disrupted flows will take and the capacities

that will be used. Restoration techniques determine which available capacity will be used

for a specific failure (and the routes that will be used for each affected demand) at the

time of failure. We do not discuss any restoration schemes, and focus on the distinction

between dedicated protection and shared protection schemes.

Dedicated protection techniques install and assign spare capacity specifically dedi-

cated to a particular commodity (Altinkemer 1994, Chung et al. 1996, Goldschmidt et al.

2003). In a shared protection scheme, instead of pre-assigning spare capacity to protect

each commodity of the network independently, spare capacity is shared by more than
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one commodity, and used as required to restore the disrupted flow.

The simplest and most widely used dedicated protection technique is called 1+1 di-

verse protection (DP) switching (Chung et al. 1996). It uses one dedicated backup route

for each commodity, the backup being physically different (on a node-disjoint path) than

the no-failure route. This provides a very fast reconfiguration mechanism (under failure,

all affected commodities are simply rerouted on their designated backup routes), but is

very expensive in terms of capacity, more than doubling the capacity of the non-survivable

network (the backup route is generally longer than the no-failure one).

With the advent of optical networks and sophisticated routing equipment (add/drop

multiplexers), a new dedicated protection technique known as Self-Healing Rings (SHR)

was introduced (Slevinsky et al. 1993, Altinkemer 1994, Cosares et al. 1995, Luss et al.

1998, Soriano et al. 1998, Sutter et al. 1998, Armony et al. 2000, Hochbaum and Olinick

2001, Goldschmidt et al. 2003). In networks using SHRs, nodes of a network are covered

by rings (closed loops or undirected cycles) consisting of edges of the same capacity.

Within such a ring architecture, there exist two arc-disjoint paths between any pair of

nodes in the ring, by construction. SHR networks are thus inherently survivable, since

any flow of a commodity through a ring is protected against any edge failure by sending

the flow back in the reverse direction along the ring.

SHRs maintain very fast reconfiguration times in the event of failure. At the same

time, they achieve lower spare capacity requirements than 1+1 DP, since spare capacity

on a ring is shared by all demand flows using that ring. For this reason, ensuring sur-

vivability using SHRs is not dedicated protection in the truest sense. However, since the

spare capacity on a ring is dedicated to protect failures on that ring, SHRs have been

traditionally considered a dedicated protection technique.

There are several types of SHRs, depending on the protocol used for their implemen-

tation. We can broadly classify them as unidirectional and bidirectional, depending on

the way the flow is routed under no failure.

In a unidirectional ring, no-failure flow is only sent in one direction; the other direction

is reserved for failure flows. The ring capacity required for a unidirectional SHR is thus
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determined by the largest possible failure flow, which will be the maximum flow carried by

any arc on the ring. In a bidirectional ring, both directions may be used for no-failure flow;

on failure, this flow is sent in the other direction. Thus, the maximum flow on any arc in

a particular direction is the sum of the no-failure flow on that arc and the maximum flow

in the other direction. Thus, for bidirectional SHRs, the ring capacity required is equal to

the sum of the maximum flows carried in each direction.

As a result, bidirectional SHRs do not provide any capacity savings over unidirectional

SHRs, but may result in lower routing costs. Even though SHRs provide excellent surviv-

ability characteristics and extremely fast reconfiguration of flow, they still result in a huge

increase in capacity utilization (since we enforce a ring topology on the network), and a

high cost.

A significant reduction in the amount of spare capacity can be achieved by using a

general network topology and a shared protection strategy to deal with failures (Ven-

ables et al. 1993, Herzberg et al. 1995, Lisser et al. 1995, Alevras et al. 1998, Dahl and

Stoer 1998, Iraschko et al. 1998, Xiong and Mason 1998, 1999, Bienstock and Muratore

2000, Balakrishnan et al. 2002). Instead of pre-assigning spare capacity to protect each

commodity of the network independently, the shared protection approach spreads the

redundant capacity over the whole network and uses it to restore disrupted flow. Under a

shared protection scheme, the spare capacity is shared by more than one commodity.

This makes shared protection much more capacity-efficient, since the same spare

capacity can be used by several rerouting paths to recover from different failures. How-

ever, which spare capacity is to be used for a specific failure, and what shared protection

route will be used for each affected commodity have to be determined a priori. Thus, im-

plementation of reconfiguration in the event of failure is inherently slower than dedicated

protection, and requires much more complex mechanisms and software packages.

For shared protection, three different rerouting policies are considered in the literature:

link rerouting, where the disrupted flow is rerouted between the end nodes of the failed

edge(s); path rerouting, where the disrupted flow is rerouted all the way from the origin

to the destination nodes of the commodities; and global rerouting, where the flow of all
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commodities, whether disrupted or not, may be rerouted under failure. In the telecommu-

nications literature, shared protection networks are often referred to as mesh-networks

since they do not make any assumptions on the structure of the network.

In practice, ring and mesh networks are usually deployed in complete isolation from

one another. Recently, there has been an increased effort in designing hybrid networks

that have the reconfiguration times of ring networks and the capacity efficiency of gen-

eral/mesh networks. In Section 3.4, we review the several ways in which hybrid networks

are being implemented in telecommunication networks (Grover and Martens 2000).

One such step toward achieving this objective is the development of hybrid networks

with predefined failure-flow patterns. In this approach, we still use a mesh network for

no-failure routing, but use the predefined failure-flow patterns for all failure flows. We

only reroute those demands that are disrupted by failure. For instance, using predefined

undirected cycles as failure-flow patterns has been shown to be capacity-efficient, with

fast reconfiguration times (Grover and Stamatelakis 1998, Stamatelakis and Grover 2000,

Schupke et al. 2002). In Section 3.4.3, we present our framework that uses directed

cycles as failure-flow patterns to design survivable networks.

Before discussing dedicated protection and shared protection schemes in detail in

Sections 3.2 and 3.3, we define a related but simpler problem, the spare capacity assign-

ment problem (SCP). In the SCP, given no-failure flow and network capacity, we need to

determine the minimum cost allocation of spare capacity to provide survivability under

the chosen scheme.

Definition 3.3 Spare capacity assignment problem (SCP): Given a directed network,

capacity installation costs, no-failure routing for the commodities, installed capacity on

the network, and a set of failure states, we wish to reroute these commodities so that the

net flow on any arc for any failure state is at most the capacity installed on that edge and

all demands are met in all failure states, at minimum spare capacity installation costs.

Solving NDP first and then SCP for the routings suggested by NDP is less capacity-

efficient than solving SNP directly for the corresponding shared protection scheme, see

Murakami and Kim (1995) for an example. However, this hierarchical approach may give
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a good starting solution for SNP, and is used by several researchers (Herzberg et al.

1995, Iraschko et al. 1998, Sakauchi et al. 1990).

Alternatively, we can employ an iterative approach. After solving NDP and then SCP,

we solve the multi-commodity flow problem (MFP) on the resulting network for the no-

failure flow state. From the solution to the MFP, we install as much capacity as required

on the network, and solve SCP again. This process may be repeated until costs reduce

no further.

The definitions of SCP and SNP are quite generic; they do not discuss how surviv-

ability is ensured. SCP and SNP are also referred to as the hierarchical (non-joint) and

integrated (joint) approaches to solving survivable network design problems. We focus on

the integrated approach, except to illustrate the ideas first with the hierarchical approach,

or to review work that utilizes the hierarchical approach.

In a telecommunications network, the choice of survivability strategies has a great

impact on network architecture and equipment cost. In Sections 3.2 and 3.3, we take a

closer look at the specific design problems arising from dedicated protection and shared

protection, and review the relevant literature. In Section 3.4, we discuss the design of

hybrid networks using predetermined failure-flow patterns. We review earlier work that

uses undirected p-cycles in a hierarchical approach, and then present our methodology

that uses directed cycles as failure-flow patterns. In Chapter 4, we study the mixed-

integer formulation of our approach in detail.

3.2 Dedicated protection schemes

3.2.1 1+1 diverse protection

In 1+1 DP switching, one dedicated backup route on a node-disjoint path is allocated

for each commodity. Capacity is dedicated to the backup route of each commodity and

used to reroute the commodity under failure. Backup routes of different commodities do

not share capacity. This scheme provides a very fast reconfiguration mechanism that is

simple to implement. However, it is very expensive in terms of capacity, since we provide
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enough capacity for at least twice the amount of demand for each commodity.

Definition 3.4 1+1 diverse protection network design problem (DPP): Given a network,

a set of commodities (in terms of their origin-destination pairs, and the demands), and

a set of installable capacity types, we wish to install integer multiples of capacity on

the arcs of the network so that each commodity can be simultaneously routed through

two different node-disjoint paths while minimizing the total capacity installation and flow

routing costs.

We consider only unsplittable flow DPP, where the primary and backup routes can not

be split into multiple paths. Splittable flow DP switching is more difficult to model, since

each of the primary paths must be node-disjoint from every backup path. This forces us

to use indicator binary variables for each commodity and arc combination, in addition to

the continuous flow variables.

We present an arc formulation for DPP. Let G = (V,E) be an undirected graph with

node set V and edge set E. Let F be the set of all ordered pairs (arcs) from E, i.e.,

F = {(ij), (ji) : [ij] ∈ E}. We use (ij) to denote the arc from node i to node j, and [ij]

to denote the edge between nodes i and j. We use G′ = (V, F ) to denote the directed

graph with node set V and arc set F .

Let K be the set of commodities. Let {(sk, tk, dk)}k∈K be the commodity triples of the

source and destination nodes sk and tk, and dk be the supply at sk for tk, for all k ∈ K.

We define bki as the supply of commodity k at node i, i.e., bk
sk = dk, bk

tk
= −dk, and bki = 0

for all i ∈ V \ {sk, tk}.

We define variable yk
ij as the fraction of commodity k routed through arc (ij) ∈ F .

Let ekij be the cost associated with routing each unit of commodity k ∈ K. We define the

capacity variable x[ij] as the amount of capacity installed on edge [ij]. Let h[ij] be the

cost of installing unit capacity on edge [ij] ∈ E. We use w0
[ij] to denote the pre-existing

capacity on edge [ij] ∈ E.

For this formulation, we assume that zk
ij is used to denote the backup route for com-

modity k. Thus, zk
ij = 1 if arc (ij) is used in the backup path for commodity k, and 0
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otherwise. Then, the mathematical formulation for DPP is:

min
∑

(ij)∈F

∑

k∈K

dkekijy
k
ij +

∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

(ij)∈F

dkyk
ij −

∑

(ji)∈F

dkyk
ji = bki ∀i ∈ V, k ∈ K (3.1)

∑

(ij)∈F

dkzk
ij −

∑

(ji)∈F

dkzk
ji = bki ∀i ∈ V, k ∈ K (3.2)

∑

(ij)∈F

(yk
ij + zk

ij) ≤ 1 ∀i ∈ V \ {sk}, k ∈ K (3.3)

∑

k∈K

dk(yk
ij + zk

ij) ≤ w0
[ij] + x[ij] ∀(ij) ∈ F (3.4)

zk
ij , y

k
ij ∈ R ∀(ij) ∈ F, k ∈ K (3.5)

x[ij] ∈ Z+ ∀[ij] ∈ E

In the above formulation, constraints (3.1) and (3.2) guarantee that all commodities

are assigned both no-failure and backup routes. Constraints (3.3) enforce that these two

routes be node-disjoint. Constraints (3.4) ensure that capacity assigned to edge [ij] is

large enough to accommodate demand routed on arc (ij).

To ensure that the routing of commodities is unsplittable, we replace continuous flow

variables y, z by binary variables in (3.5). Interestingly, if we have no flow costs, then we

can formulate DPP using only one set of flow variables y to indicate both primary and

backup flow. The new formulation is obtained by removing variables z, removing con-

straints (3.2), and replacing the right hand side of constraints (3.1) by 2bki . This form of

dedicated protection has extremely poor capacity utilization, because we allocate capac-

ity to route twice the demand for each commodity.

3.2.2 Self-healing rings

Definition 3.5 Self-healing ring network design problem (RNP): Given a two-connected

network and a set of commodities (origin-destination pairs) and demand of each com-

modity, we wish to determine a set of feasible SHRs such that all demands are met in all

failure states, at minimum cost.
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An SHR is a cluster of nodes that are connected in a loop by edges of the same

capacity; a node can be connected to more than one ring. The following formulation

(Soriano et al. 1998) ignores the problem of connecting the nodes in a ring after group-

ing them. Since this formulation is significantly different from other formulations in this

dissertation, we do not follow all of the notational conventions introduced in Section 1.1;

Section 3.2.2 is self-contained in terms of its notation.

Let cr represent the cost of connecting a node to ring r, frs the inter-ring flow unit

cost from ring r to ring s, ur the capacity of ring r, h the unit cost of installing capacity

on any edge, L the set of inter-ring transfer nodes, and R the set of possible SHRs, Lr

the set of ring-transfer nodes on ring r. Let xir = 1 if node i is connected to ring r and 0

otherwise; and yr = 1 if ring r is used, and 0 otherwise. We define vk
ir,vk

rj , and wk`
rs as the

the quantity of commodity k that enters ring r at node i, the quantity of commodity k that

leaves ring r at node j, and the quantity of inter-ring flow of commodity k from ring r to

ring s at inter-ring transfer node `, respectively. Now, we can formulate RNP as follows.

min
∑

r∈R

∑

i∈V

crxir +
∑

r∈R

∑

s∈R,s6=r

frs

∑

k∈K

∑

`∈L

wk`
rs + h

∑

r∈R

uryr (3.6)

s.t. :
∑

r∈R

vk
skr = dk ∀k ∈ K (3.7)

∑

r∈R

vk
rtk

= dk ∀k ∈ K (3.8)

vk
skr +

∑

s∈R,s6=r

∑

`∈Lr∩Ls

wk`
sr − vk

rtk
=

∑

s∈R,s6=r

∑

`∈Lr∩Ls

wk`
rs ∀r ∈ R, ∀k ∈ K (3.9)

∑

k∈K

(vk
skr +

∑

s∈R,s6=r

∑

`∈Lr∩Ls

wk`
sr) ≤ ur ∀r ∈ R (3.10)

∑

k∈K:sk=i

vk
ir +

∑

k∈K:tk=i

vk
ri ≤

∑

k∈K:sk=i or tk=i

dkxk
ir ∀i ∈ V, ∀r ∈ R (3.11)

xir ∈ {0, 1} ∀i ∈ V, ∀r ∈ R

yr ∈ {0, 1} ∀r ∈ R

vk
ir, v

k
ri ∈ R+ ∀i ∈ V, ∀r ∈ R

wk`
rs ∈ R+ ∀r, s ∈ R (r 6= s), ∀k ∈ K, ∀` ∈ L ∩ r ∩ s

61



www.manaraa.com

The objective (3.6) minimizes the sum of node, inter-ring flow, and capacity installation

costs. The node cost corresponds to the equipment cost (cr) of connecting a node to ring

r. For each unit of flow from ring r to ring s, we incur a inter-ring flow cost f . The cost of

installing capacity ur on ring r is hur.

Constraints (3.7) and (3.8) ensure that for each commodity k, all the demand enters

some ring at its source node, and leaves some ring at its destination node, respectively.

Constraints (3.9) are flow conservation constraints ensuring that for all commodities k,

the total flow entering each ring r is equal to the total flow leaving that ring. Constraint

(3.10) is the capacity constraint for the SHRs and enforces that the flow on ring r is less

than its capacity ur. Finally, (3.11) is a design constraint, ensuring that no demand enters

or leaves a given SHR at an origin or destination node if that node is not connected to

that particular SHR.

As we can see, this formulation is already quite complex. However, this formulation

does not quite model RNP completely. For instance, we have no control over the ca-

pacities of the rings, though the formulation does allow us to build up rings of different

capacities by using various combinations of available capacity types. Furthermore, this

formulation allows us to connect a node to a ring only if flow enters or leaves the ring

through that node. Also, the formulation forces us to index rings by unique variables; the

number of rings used is bounded by |R|.

Even more importantly, the rings have not been completely defined yet. The solution

to this formulation merely tells us which nodes are connected to form a SHR. We still

must find the best undirected cycle that passes through each one of the nodes assigned

to a particular ring, which corresponds to solving an instance of the classical traveling

salesperson problem (TSP).

RNP is an extremely difficult problem to solve. As expected, the problem can be

approached from several angles, giving rise to quite different design problems, depending

on the simplifying assumptions considered and the characteristics desired in the resulting

survivable network. In the literature, the following special cases have been considered.

One of the simplest versions of the problem addresses a situation where the network
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contains a single designated hub node where all SHRs interconnect, allowing demands

to flow from one ring to another. Each node can be connected to several SHRs. In this

stacked ring network design, one needs to determine which nodes connect to each SHR,

and route the commodities through the rings to minimize costs.

Sutter et al. (1998) solve one such problem in which the only costs considered are

the node costs. They present heuristics based on simulated annealing and an exact

algorithm based on integer column generation. All rings are unidirectional SHRs of iden-

tical capacity. Armony et al. (2000) study the same problem, but use a cost function

that includes both node costs and inter-ring flow costs. They develop a genetic algo-

rithm heuristic and compare their results to optimal solutions obtained by a commercial

IP solver.

A second type of network design problems using SHR protection arises when the

architecture of the resulting network is required to contain multiple rings corresponding

to several different topological cycles. A variant of this type of multi-ring network design

problem requires that the network to be designed must have a two-level architecture

consisting of a set of node disjoint rings connected by a higher level (federal) ring that

carries all inter-ring traffic.

Altinkemer (1994) studies this problem in the context of computer networks. He as-

sumes that the hub nodes composing the federal ring are given and that the only capacity

constraints are that a ring can connect no more than a pre-specified maximum number

of nodes (i.e., hop constraints). He presents simple heuristics exploiting the similarity

of the problem with the multi-depot vehicle routing problem, and provides worst case

performance bounds.

Goldschmidt et al. (2003) study the same problem in the context of optical networks.

Now, in addition to the hop limits, there are capacity constraints on the rings. The authors

consider only unidirectional SHRs where all rings have identical capacities. They study

two versions of the problem, one where the number of lower level rings is unconstrained

and the other where this value is fixed to some value λ. As in the previous work, the

authors present heuristics with worst case performance guarantees.
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The third group considers spare capacity assignment (SCP) using bidirectional SHRs

to solve RNP. In this context, the commodities have already been routed on a meshed

network, and one needs to find a set of capacitated rings such that every edge on the

network is covered by at least one ring of adequate capacity.

Slevinsky et al. (1993) propose a greedy heuristic based on 7 different measures of

capacity efficiency to solve this problem. They test these measures on sparse networks

ranging from 6 to 39 nodes, and present better results than any known before for the

same instances. For the smaller instances, they obtain the optimal solution for at least

one of the metrics used.

More recently, a set covering approach is used by Luss et al. (1998) to develop a

heuristic procedure. They solve a version of the problem in which capacities are not

explicitly taken into account. They test their heuristic on two large sparse instances (50

and 509 nodes, respectively) and obtain feasible solutions that are 12% from the optimal,

on average.

The final group of research attempts to incorporate no assumptions on the ring topol-

ogy; node clusters defining rings are not required to be disjoint and the resulting archi-

tecture is not hierarchical by definition. Some of the earlier and better known work on this

topic was carried out at Bellcore and resulted in the planning software known as SONET

Toolkit, see Cosares et al. (1995).

Toolkit employs a greedy approach that sequentially constructs a survivable network

design. In the first stage, clusters of nodes that possibly make good SHRs are identified.

In the second stage, a heuristic procedure determines if the network contains a cycle

connecting the cluster nodes to form a SHR. While there are still commodities to protect,

the procedure tries to identify other interesting clusters. Once all commodities have been

protected, the capacities of the SHRs are determined.

The first application of Toolkit to a real network planning scenario from Bellcore pro-

vided a solution with a cost 0.9 million dollars less than the current best solution (manually

prepared) of 3.7 million dollars. In most trial networks, the authors report a cost saving of

around 10-25%.
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3.3 Shared protection schemes

Networks with minimum capacity requirements can be obtained by shared protection

schemes using a global rerouting policy. However, implementation of global rerouting of

all flows (whether disrupted or not) in the event of a failure requires much more com-

plex hardware and software packages and is inherently slower than dedicated protection

schemes such as SHR and 1+1 DP. Furthermore, the size of failure scenario based

shared protection models grows very rapidly with the size of the graph and render such

models unfit for tackling practical problems.

Hierarchical shared protection schemes are popular for designing survivable networks

in practice. In the first stage, working flows and edge capacities are determined for the

no-failure scenario without survivability concerns. In the second stage, sufficient spare

capacity is assigned to the edges of the network so that the disrupted flow can be safely

rerouted in the case of failures (Herzberg et al. 1995, Grover and Stamatelakis 1998,

Iraschko et al. 1998, Balakrishnan et al. 2001, 2002). Shared protection schemes can

be primarily differentiated based on the rerouting policy considered: link, path, or global

rerouting, see Figure 3.1.

We present the formulations for these shared protection schemes and discuss related

literature; also see Xiong and Mason (1999) for a detailed comparison of the shared

protection strategies. In Figure 3.1, we illustrate the differences between global, path and

link rerouting. We consider a commodity that is routed from node s to node t using the

arc (ij). In link rerouting (a), when edge [ij] fails, the commodity is rerouted from node

i to node j. In path rerouting (b), when edge [ij] fails, the commodity is rerouted from

source node s to destination node t. In global rerouting, the commodity may be rerouted

from source s to destination t even if no edge on the no-failure route fails.

We model diversification, which is a requirement enforced by telecommunication com-

panies in the design of survivable networks. Under diversification requirements, no more

than a certain fraction (γk) of commodity k can be routed on a particular arc under no

failure. This ensures that only a certain fraction (γk) of any commodity will be affected
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Figure 3.1: Shared protection strategies
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under single-edge failures. By enforcing that every commodity is routed on several edge-

disjoint paths, not all paths are affected in the case of a component failure. As we shall

see, this can be easily enforced in shared protection and hybrid schemes. However, for

all the computations in this dissertation, we will assume that γk = 1.

3.3.1 Global rerouting

In global rerouting shared protection (GNP), all demands may be rerouted under any

failure, even those that are not disrupted. We use F \ [ij] to represent F \ {(ij), (ji)}. Let

S be the set of failure states. The mathematical formulation for GNP is:

min
∑

(ij)∈F

∑

k∈K

ekijd
kyk0

ij +
∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

(ij)∈F

dkyks
ij −

∑

(ji)∈F

dkyks
ji = bki ∀i ∈ V, ∀k ∈ K, ∀s ∈ S (3.12)

∑

k∈K

dkyks
ij ≤ w0

[ij] + x[ij] ∀(ij) ∈ F \ {s}, ∀s ∈ S (3.13)

0 ≤ yks
ij ≤ 1 ∀(ij) ∈ F \ {s}, ∀k ∈ K, ∀s ∈ S \ {0}

0 ≤ yk0
ij ≤ γk ∀(ij) ∈ F, ∀k ∈ K

x[ij] ∈ Z+ ∀[ij] ∈ E
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In the above formulation, constraints (3.12) guarantee that all demands are satisfied

in all failure states. Constraints (3.13) ensure that capacity assigned to edge [ij] is large

enough to accommodate demand routed on arc (ij) for all possible failure states. In this

formulation, the flow is splittable.

For the unsplittable flow formulation, we simply force the xks
ij variables to be binary.

Obviously, unsplittable flow requires that all diversification parameters γk be 1. The defi-

nition of failure states easily allows us to model failures more complex than edge failures.

As mentioned earlier, GNP yields the most capacity-efficient capacitated survivable

networks (by setting flow costs e to zero), if it can be solved to optimality. This is because

GNP imposes no restrictions on either the network structure or the routing of flow.

This formulation is also known as the arc formulation since there is a flow variable yks
ij

for each arc in each failure state. It requires |V ||K||S|+|F ||S| constraints. For a complete

network of |V | nodes with complete demand, |F | = |K| = |V |(|V | − 1). If we consider

only single-edge failures, then |S| = |V |(|V | − 1)/2 + 1. When |V | = 10, this formulation

has 45540 constraints and 372690 variables. When |V | = 20, it has 148980 constraints

and 1451790 variables.

Even when the network is not as dense, this formulation can easily run into tens

of thousands of constraints and millions of variables even for medium-sized networks,

making it very hard to load into computer memory, let alone solve optimally. The size of

GNP is larger than NDP by an order of magnitude |S|, since NDP is the special case of

GNP with the single no-failure scenario S = {0}.

To alleviate this problem, one introduces a variable to indicate the fraction of a com-

modity that is routed through a certain path. Naturally, this formulation is often referred

to as the path formulation. The number of path variables is exponential in the number of

arcs. As in the arc formulation, we define γk as the maximum fraction of commodity k

that may be routed by any path in the no-failure state.

In path-based formulations, yp indicates the fraction of commodity routed on path p.

P s
k denotes the set of paths from sk to tk in failure state s. For any path p, we set δp

ij = 1

67



www.manaraa.com

if it includes arc (ij), and 0 otherwise. The path formulation for GNP is:

min
∑

k∈K

∑

p∈P 0
k

∑

(ij)∈F

dkekijδ
p
ijyp +

∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

p∈P s
k

yp = 1 ∀k ∈ K, ∀s ∈ S

∑

k∈K

∑

p∈P s
k

dkδp
ijyp ≤ w0

[ij] + x[ij] ∀(ij) ∈ F \ {s}, ∀s ∈ S

0 ≤ yp ≤ 1 ∀p ∈ P s
k , ∀k ∈ K, ∀s ∈ S \ {0}

0 ≤ yp ≤ γk ∀p ∈ P 0
k , ∀k ∈ K

x[ij] ∈ Z+ ∀[ij] ∈ E

The path formulation requires only |K||S| + |F ||S| constraints, far fewer than the arc

formulation. However, this is offset by the fact that there are an exponential number of

path variables in this formulation.

The formulation for the spare capacity assignment problem (SCP) with global rerout-

ing is slightly simpler. In the SCP, the no-failure flow and network capacity are known a

priori; we only need to determine the minimum cost allocation of spare capacity to provide

survivability under the chosen scheme. In the formulation for SCP, we do not have the

no-failure flow variables (yk0
ij , k ∈ K for arc formulations, and yp, p ∈ P 0

k for path formula-

tions), and the constraints for no-failure flow. Instead, we are given the flow quantities g0
ij

indicating the total no-failure flow on arc (ij). We minimize only the capacity installation

costs. The size of the formulation for SCP is of the same magnitude as that of GNP.

In Section 5.4, we show that the formulations for GNP and SCP with global rerout-

ing are too big to solve to optimality with current state-of-the-art solvers. Therefore, re-

searchers have adopted various heuristic approaches to solve the problem.

Alevras et al. (1998) and Dahl and Stoer (1998) use the path formulation to study

GNP. They first solve the LP relaxation, and then run heuristics to obtain a feasible so-

lution. Both study the splittable flow case, and also model diversification (where no path

may carry more than a certain fraction of the flow). Both develop valid inequalities and in-

corporate them in a cutting-plane framework to improve the LP relaxation before applying
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the heuristics. They differ in the classes of inequalities generated.

Alevras et al. (1998) develop three classes of inequalities; strengthened partition in-

equalities, strengthened metric inequalities, and diversification inequalities. They use

four real-life networks from a German telecommunication services provider to test their

algorithm. They are sparse networks (around 3|V | edges), where the number of nodes

|V | varies from 11 to 17. Their running times vary from 7 minutes all the way up to 900

minutes on a SUN Ultra-1. Further, the gaps between the strengthened LP relaxation and

best feasible solution obtained at termination are quite large (50% on average). In other

words, the inequalities added reduce the integrality gap only by around 50%. The authors

attribute the weak lower bounds to the fact that some of the classes of inequalities are

useful only under particular parameter combinations.

On the other hand, Dahl and Stoer (1998) study the cut sets for each failure state to

develop two new classes of inequalities; diversified metric inequalities and band inequal-

ities. They use two very sparse networks (27 nodes, 51 edges; and 8 nodes, 13 edges) to

test their algorithm, but obtain much better gaps at termination (12% and 8%)

Lisser et al. (1995) solve the LP relaxation of the arc formulation using lagrangian

relaxation; dualizing the capacity constraints (3.13). The authors attempt to solve large

instances (60 nodes, 120 arcs). These instances have more than 200, 000 constraints in

the formulation and were not solvable using the commercial LP solvers available then.

They solve the lagrangian dual by generating cutting planes. This technique allows them

to solve the LP relaxations optimally. While the authors present a technique for solving re-

ally large LP relaxations optimally, they do not attempt to obtain feasible integer solutions

from the LP solutions.

Bienstock and Muratore (2000) study a problem where only a fraction of each demand

has to be satisfied in any failure state. They study the corresponding cut set and present

several classes of facet-defining inequalities to strengthen the cut-set polyhedra, which

arise as subsystems of the GNP. They extend the basic model to incorporate cut sets

that arise in the context of node failures. Finally, they present some heuristics to separate

these inequalities, but provide no computational results.
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3.3.2 Path rerouting

We now present a path-based formulation that models the path rerouting scheme. In path

rerouting shared protection (PNP), the disrupted demand is rerouted all the way from the

origin to the destination nodes of the commodities. To model PNP, we need to know

exactly which commodities were affected under failure. This can be easily formulated

using a path-based formulation, which we present here. The arc-based formulation to

model PNP is more complex; since it requires us to introduce an indicator variable for

each commodity, arc and failure state combination to track what flows are effected.

For any path p, we set ζp
s = 1 if it is affected by failure state s ∈ S \ {0}, and 0

otherwise. The path formulation for path rerouting shared protection (PNP) is:

min
∑

k∈K

∑

p∈P 0
k

∑

(ij)∈F

dkckijδ
p
ijyp +

∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

p∈P 0
k

yp = 1 ∀k ∈ K

∑

k∈K

∑

p∈P 0
k

dkδp
ijyp ≤ w0

[ij] + x[ij] ∀(ij) ∈ F

∑

p∈P s
k

yp =
∑

p∈P 0
k

ζp
s yp ∀k ∈ K, ∀s ∈ S \ {0} (3.14)

∑

k∈K

∑

p∈P 0
k

dkδp
ij(1 − ζp

s )yp

+
∑

k∈K

∑

p∈P s
k

dkδp
ijyp ≤ w0

[ij] + x[ij] ∀(ij) ∈ F \ {s}, ∀s ∈ S \ {0} (3.15)

0 ≤ yp ≤ 1 ∀p ∈ P s
k , ∀k ∈ K, ∀s ∈ S \ {0}

0 ≤ yp ≤ γk ∀p ∈ P 0
k , ∀k ∈ K,

x[ij] ∈ Z+ ∀[ij] ∈ E

In the above formulation, constraints (3.14) ensure that each affected demand will

take alternative routes in case of failure. Constraints (3.15) ensure that capacity assigned

to edge [ij] is large enough to accommodate demand routed on arc (ij) for all possible

failure states; first and second terms on the left hand side correspond to no-failure flow
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and failure flows, respectively.

Both global and path rerouting require |K||S| + |F ||S| constraints in the path formu-

lation. Hence, global rerouting is more capacity-efficient than path rerouting, and at no

additional cost. However, path rerouting is easier to implement in practice since we only

need to reroute those demands that were disrupted by failure.

Again, the formulation for SCP under path rerouting is simpler than PNP, but not by

much. We do not require the no-failure flow variables (yp), and the constraints for no-

failure flow. Instead we treat no-failure routing as given data (g0
ij). We minimize only the

capacity installation costs. The formulation is much sparser, but the size of the problem

does not decrease significantly. Interestingly, since we now have complete information

about no-failure flow, we can easily model the SCP under path rerouting using an arc

formulation, as opposed to PNP. However, all shared protection schemes are equally

hard to solve in the hierarchical framework since one now has complete information on

what demands to reroute for each failure state.

Iraschko et al. (1998) study SCP with path rerouting. They also discuss how their for-

mulation is modified to accommodate link rerouting, and provide lower bounds on spare

capacity requirements in both path and link rerouting. They extend their formulation to

model PNP. Finally, they evaluate the capacity efficiency obtained from solving PNP di-

rectly in an integrated framework, as opposed to solving NDP followed by SCP on a test

set of 5 problem instances (sparse networks, number of nodes varying from 10 to 30).

The authors consider only single-edge failures. For their problem instances, solving

PNP directly gives us a 7% reduction (on average) in capacity utilization as compared with

solving NDP followed by SCP in a hierarchical framework. The authors do not present

any specific solution techniques; they directly use CPLEX to solve the formulations.

Xiong and Mason (1998) also study PNP and compare it with SCP with path rerouting.

They evaluate the capacity efficiency obtained from solving PNP directly in an integrated

framework, as opposed to solving NDP followed by SCP on a test set of 4 problem in-

stances (sparse networks, number of nodes varying from 11 to 20). For their problem

instances, solving PNP directly gives us a 4% reduction (on average) in capacity utiliza-
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tion as compared with solving NDP followed by SCP in a hierarchical framework. How-

ever, they consider only 5 possible routes for each commodity. The authors also develop

improvement heuristics to solve both approaches.

3.3.3 Link rerouting

We now present a mathematical formulation that models link rerouting shared protection

(LNP). In LNP, the disrupted demand is rerouted between the end nodes of the failed

edge; we present the arc formulation for LNP.

min
∑

(ij)∈F

∑

k∈K

ckijd
kyk0

ij +
∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

(ij)∈F

dkyks
ij −

∑

(ji)∈F

dkyks
ji = bki ∀i ∈ V, ∀k ∈ K, ∀s ∈ S

∑

k∈K

dkyks
ij − w0

[ij] ≤ x[ij] ∀(ij) ∈ F \ {s}, ∀s ∈ S

yk0
ij ≤ yks

ij ≤ 1 ∀(ij) ∈ F \ {s}, ∀k ∈ K, ∀s ∈ S \ {0} (3.16)

0 ≤ yk0
ij ≤ γk ∀(ij) ∈ F, ∀k ∈ K

x[ij] ∈ Z+ ∀[ij] ∈ E

Constraints (3.16) ensure that under failure, the disrupted demand is rerouted around

the endpoints of the failed edge. This formulation is obtained by adding constraints (3.16)

to the arc formulation for GNP. As a result, this forces us to use |K||S||F | more constraints

than in the GNP. At the same time, it also gives us a less capacity-efficient solution than

GNP. However, the path formulation of LNP is smaller than the path formulations for GNP

and PNP.

Let Bs be the set of node-pairs affected by the failure state s. A single-edge failure s

corresponds to exactly two affected node-pairs that correspond to the arcs on the edge;

node-pairs are defined to be directed. Let Rb denote the set of paths from the first node

to the second node of node-pair b ∈ Bs. These paths exclude arcs affected by the failure

state s. Demands disrupted by the failure of flow between node-pair b are rerouted among

the paths on Rb. We use new variables y′p to denote the amount of flow rerouted on path
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p ∈ Rb. The path formulation for LNP is:

min
∑

k∈K

∑

p∈P 0
k

∑

(ij)∈F

dkckijδ
p
ijyp+

∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

p∈P 0
k

yp = 1 ∀k ∈ K

∑

k∈K

∑

p∈P 0
k

ζp
sd

kyp =
∑

p∈Rb

y′p ∀b ∈ Bs, ∀s ∈ S (3.17)

∑

k∈K

∑

p∈P 0
k

dkδp
ijyp +

∑

k∈K

∑

p∈Rb

δp
ijy

′
p ≤ w0

[ij] + x[ij] ∀(ij) ∈ F \ {s}, ∀b ∈ Bs, ∀s ∈ S

(3.18)

0 ≤ y′p ∀p ∈ Rb, ∀b ∈ Bs

0 ≤ yp ≤ γk ∀p ∈ P 0
k , ∀k ∈ K

x[ij] ∈ Z+ ∀[ij] ∈ E

In the above formulation, constraints (3.17) ensure that flow on each arc is restored in

case the arc fails. Constraints (3.18) ensure that capacity assigned to edge [ij] is large

enough to accommodate demand routed on arc (ij) for all possible failure states; first

and second terms on the left hand side correspond to no-failure flow and failure flows,

respectively. LNP requires |K| + |F ||S| + |F | constraints in the path formulation, fewer

than in GNP and PNP. By redefining the commodities, the arc and path formulations for

SCP under link rerouting are the same as the corresponding formulations for SCP using

path rerouting. For each failed node pair b, we define a commodity k with source and

destination points as the node pair, and demand dk which is equal to the no-failure flow

disrupted by failure of b.

Venables et al. (1993) compare 2 heuristics to solve SCP under link rerouting. The

first one, which they call Spare Link Placement Algorithm (SLPA), is a greedy algorithm

that adds spare capacity to the edges of the network. At each iteration, it adds spare

capacity to the edge that has highest span restorability; a measure they define for this

algorithm. After the network is fully survivable, the algorithm attempts to minimize redun-

dancy while maintaining survivability. The second heuristic, Iterative Cutsets Heuristic

73



www.manaraa.com

(ICH), formulates spare capacity placement as an LP subject to constraints based on a

subset of cut sets of the network. On solving this LP formulation, if the resultant net-

work is not survivable, more cut sets are generated and added for the arcs not restored.

This process is repeated until a survivable network is obtained. Finally, the capacities

are rounded up to integer values. The authors test both heuristics on large problem in-

stances with 20 to 100 nodes, and |F |/|V | between 3 and 6. ICH performed better for all

instances, with an average gap of 4% at termination, as compared with 12% for SLPA.

However, ICH was unable to solve instances larger than 50 nodes, and took much more

time than SLPA even for the smaller instances.

Herzberg et al. (1995) use the path formulation to study the splittable flow SCP with

link rerouting. They attempt to minimize the maximum spare capacity installed on any

edge. They first solve the LP relaxation, round up the LP optimal solution to obtain

feasible solutions and then use a series of Max-Flow tests to tighten the feasible solution.

They restrict the set of feasible failure-flow paths by imposing a hop-limit (length limit),

but show by means of a numerical example on a large sparse network (100 nodes, 200

edges) that efficient spare capacity solutions can still be found with relatively small hop-

limit values (7 for this instance).

3.3.4 Comparison of shared protection schemes

As mentioned above, the most capacity-efficient networks can be designed by global

rerouting. However, there are at least two reasons as to why such a framework is not

used in practice. The first one is that it has O(|V |5) number of variables and constraints

for a complete network and is, therefore, impractical for designing networks except for

very small instances. The second reason is that its solution involves globally rerouting

flow on the network whether or not the flow of a commodity is disrupted by the failed edge.

Solutions with minimal changes to no-failure flow are preferred because it is highly unde-

sirable in practice to manipulate unaffected flow while restoring affected flows. Therefore,

a number of practical models and strategies have been developed for designing surviv-

able networks that admit path or link rerouting of flow on a failed edge.
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All shared protection schemes are inherently more difficult to implement than dedi-

cated protection. In Table 3.1, we summarize the advantages and disadvantages of the

three shared protection schemes with respect to the following properties.

Table 3.1: Comparison of shared protection schemes

Capacity utilization
GNP Most capacity-efficient since it is a relaxation of path and link rerouting

schemes, as we may reroute any commodity, not just those affected by
a failure.

PNP More capacity-efficient than LNP since any solution to link rerouting is
also a solution to path rerouting.

LNP Least capacity-efficient. In fact, link rerouting often forces us to
backtrack, sending the same commodity in both directions on an edge.

Computational efficiency
GNP Path-based formulations of the same size as PNP.
PNP Less capacity-efficient solutions when compared with GNP, but no

easier computationally.
LNP Modeled in a more compact formulation, and is easier to solve than

path and global rerouting.
Ease of implementation

GNP Hardest to implement since all routings might change under a failure,
even if they are not disrupted due to a particular failure.

PNP Easier to implement, and has faster reconfiguration times, than GNP.
LNP Faster than path and global rerouting since decentralized failure

routing is much faster.

3.4 Hybrid network design

3.4.1 Introduction

In both path and arc formulations of all shared protection schemes, the introduction of

failure states explodes the size of the formulation by order of magnitude of |S|. It is

therefore not surprising that these problems are exceedingly difficult to solve, and most of

the existing work involves the development of specialized heuristic techniques. They are

also more difficult to implement in practice than dedicated protection, and result in much

slower rerouting under failure. In particular, rerouting of disrupted as well as undisrupted

flow in case of a failure, as is the case in GNP, is harder to implement than rerouting only
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disrupted flow. Furthermore, shared protection networks are much more expensive to set

up and maintain, as they require sophisticated hardware and software.

Rings, on the other hand, require much simpler equipment and control mechanisms

at the nodes to reroute disrupted demands, and are much easier to implement. Both

ring networks and 1+1 DP are implemented using specialized type of equipment called

add/drop multiplexers (ADMs) at each node. ADMs insert/remove signals to/from edges

at source/destination points. On the other hand, shared protection on mesh networks

require the use of digital cross-connect systems (DCSs) at each node to sort and reroute

signals. DCSs are much more complicated than ADMs and are naturally more expensive.

Shared protection schemes are much more capacity-efficient than dedicated protec-

tion schemes; GNP described in Section 3.3.1 achieves the lowest capacity requirement

of all schemes. As a result, there has been a recent interest in developing hybrid net-

works that are nearly as capacity-efficient as shared protection and at the same time are

comparable to dedicated protection in reconfiguration times, equipment costs, and ease

of implementation.

There are two limited senses in which hybrids are already being implemented in

telecommunication networks. One is the principle of ring access and mesh transport.

This is a widely used form of hybrid where shared protection is applied for backbone net-

works even if switching times are longer because it offers significant savings in capacity

requirements. On the other hand, SHRs are used for local area networks (LANs) since

the reduced demand requirements do not provide capacity savings to justify the use of

more expensive routing equipment. In this approach, the main issue is about deciding the

spatial boundary defining the mesh core and access periphery. Once that is done, ring

and mesh networks are designed separately. The LANs remain spatially distinct from the

mesh backbone networks.

A second practice that is implemented is meshed-rings, which are ring-based net-

works with inter-ring transitions being DCS-managed by shared protection. This requires

that DCSs also function as ring terminals, which has led to integration of the ADM termi-

nals as DCS shelf equipment. This virtually eliminates any cost for a demand to transit
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between ring and mesh environments in the hybrids that we may consider or design.

The third type of hybrid networks allows for the allocation of capacity on several undi-

rected cycles to act as SHRs. Any fraction of a commodity may now be routed on these

rings, and is inherently survivable. The rest of the commodity is routed as in a mesh-

network, and shared protection must be provided using any of the schemes discussed

in Section 3.3. For any given edge, a part of the capacity installed may be utilized as

a ring, and the rest as a mesh. However, any capacity allocated as rings will behave

like an SHR; this capacity is dedicated to each ring, and is not to be shared with other

rings or with any shared protection scheme. Typically, in an optimal solution, some of the

commodities (or a fraction thereof) will be routed on the rings.

In Grover and Martens (2000), the authors introduce this variant and present an IP

formulation. They present 2 heuristics and evaluate their performance against the optimal

IP solution for 6 test problems. They show that even when capacity used as rings is 40%

cheaper than capacity used as a mesh, the optimal solution contains both ring and mesh

components, and not all-ring. This illustrates the effectiveness of a hybrid network that

allows the user to choose ring and mesh protection simultaneously.

In the rest of Section 3.4, we focus on the fourth (and final) method of designing hybrid

networks, which involves the use of failure-flow patterns for restoration of disrupted flow.

This approach is different from the previous methods in the sense that we no longer try

to incorporate shared protection and SHRs into a single network. We still use a mesh

network for no-failure routing, but use the failure-flow patterns for all failure flows. Only

those commodities that are disrupted by failure are rerouted. More than one failure-flow

pattern may be used to restore disrupted flow on an arc.

Using these predetermined failure-flow patterns also allows us to deal with formula-

tions that are much smaller than those required by shared protection, since we do not

have to solve an NDP for each failure state. This is an added motivation to study these

structures; not only do they have the advantages of both dedicated protection (ease of im-

plementation) and shared protection (capacity efficiency), but they are also much easier

to solve. This allows us to attack much larger instances than before.

77



www.manaraa.com

3.4.2 Predefined undirected cycles

Grover and Stamatelakis (1998) introduced the concept of utilizing predefined undirected

cycles for pre-configuration of spare capacity for the design of hybrid networks with ring-

like speed and mesh-like capacity. They call these pre-configured failure-flow structures

p-cycles. In this scheme sufficient spare capacity is installed on the undirected p-cycles

of the graph so that the working capacity on any edge from the solution of the NDP is

covered by the p-cycles that pass through both the nodes defining the edge. Next, we il-

lustrate how these structures work, and present a mathematical formulation for designing

survivable networks with undirected p-cycles.

Figure 3.2: An undirected p-cycle

(a) A p-cycle

a

(b) Link [ab] fails (c) Link [cd] fails

b

c
d

b

a d
c

a
c

b

d

Figure 3.2 illustrates the way in which an individual undirected p-cycle may be used

for restoration. In (a), an example of a undirected p-cycle is shown in bold edges. In

(b), edge [ab] on the undirected p-cycle fails, and the remaining edges of the p-cycle

are used for rerouting the flow on edge [ab]. In (c), we see how the undirected p-cycle

can also be used for restoring the flow on an edge that is a chord of the p-cycle. Here

edge [cd] fails, and the undirected p-cycle provides two restoration paths between c and

d. Thus installing half the working capacity of [cd] on the undirected p-cycle as spare

capacity covers edge [cd]. The use of an undirected p-cycle as in case (c) is the most

advantageous since no capacity is directly utilized to provide this survivability in both

directions; it is shared with capacity required to support failure on the p-cycle.

The undirected p-cycle in Figure 3.2 provides a restoration path for nine on-cycle
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failures and for ten off-cycle failures. For a given undirected p-cycle, we refer to these

failures as edge and chord failures, respectively, for obvious reasons. Also, more than

one undirected p-cycle may be used to restore disrupted flow on an edge. Grover and

Stamatelakis (1998) approach the survivable network design problem using undirected p-

cycles in an hierarchical manner. In the first stage, a capacity-efficient solution (flows and

edge capacities) is found for the NDP. In the second stage, given the working capacities,

a minimum cost allocation of spare capacity on the edges is determined so that flow on

each arc can be routed, in case of single-edge failure.

Let (ḡ0, w̄0) be a solution for the NDP, and C be the set of simple undirected cycles of

G. Grover and Stamatelakis (1998) generate all undirected p-cycles in G with a certain

length restriction. We refer to this hierarchical spare capacity assignment formulation

as HUP, since it uses undirected p-cycles. For undirected p-cycles, we say that αc
[ij] is

1 if undirected p-cycle c includes edge [ij], and 0 otherwise. Let ρc
[ij] be 1 if edge [ij]

is a chord to p-cycle c, and 0 otherwise. The decision variable zc denotes the number

of spare capacity units assigned to undirected p-cycle c ∈ C. Then,
∑

c∈C α
c
[ij]zc is the

spare capacity installed on edge [ij]. The authors give the following integer set covering

model for HUP:

min
∑

[ij]∈E

h[ij]

∑

c∈C

αc
[ij]zc

∑

c∈C

(αc
[ij] + ρc

[ij])zc ≥ w0
[ij] ∀[ij] ∈ E (3.19)

zc ∈ Z+ ∀c ∈ C

Naturally, solving the NDP first and then assigning spare capacity to cover the work-

ing edges is less capacity-efficient than solving an integrated framework directly. How-

ever, this hierarchical approach breaks the task of designing a survivable network into

two problems that are much easier to tackle computationally than any shared protection

scheme (even a hierarchical scheme); it is often preferred in practice. HUP has been re-

ported to achieve much better capacity efficiency than ring architectures as well as very

quick recovery times by several authors (Grover and Stamatelakis 1998, Stamatelakis
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and Grover 2000, Schupke et al. 2002).

In an attempt to explain why using undirected p-cycles results in capacity-efficient

networks, Stamatelakis and Grover (2000) study the effect of using various predeter-

mined failure-flow structures for uncapacitated networks. As a criterion of measurement,

they use the ratio of number of edges covered to the number of edges in the structure,

and prove that no other structure can be more capacity-efficient for this measure. They

do so by calculating an upper bound on the maximum ratio that any generic failure-flow

structure may attain and then showing that undirected p-cycles realize the same value.

3.4.3 Survivable design using directed cycles

In our methodology, we use directed cycles as failure-flow patterns to design survivable

networks. In Figure 3.3 we show two directed cycles, drawn in dashed arcs, that cover

disrupted flow on arc (ab) in the reverse direction. If edge [ab] fails, then the flow along

arc (ab) can be rerouted from node a to node b along these two directed cycles if the sum

of reserved slack on the cycles is at least the flow quantity on (ab). These directed cycles

are used to reroute not only flow on arc (ab), but also on the other arcs they consist of.

Figure 3.3: Two directed cycles protecting the flow

a

b

3.4.3.1 Formulations

Let C be the set of directed cycles of G′. For directed cycle c, we define variable zc to

denote amount of slack reserved on all arcs of cycle c. We use slack to refer to fractional

capacity that is reserved to cover no-failure flows; z are modeled as continuous variables.
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The integrated approach of designing survivable networks using directed cycles

(SDC) is formulated as

min
∑

(ij)∈F

∑

k∈K

dkekijy
k
ij +

∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

(ij)∈F

dkyk
ij −

∑

(ji)∈F

dkyk
ji = bki ∀i ∈ V, ∀k ∈ K (3.20)

∑

k∈K

dkyk
ij −

∑

c∈C

αc
jizc ≤ 0 ∀(ij) ∈ F (3.21)

∑

k∈K

dkyk
ij +

∑

c∈C

αc
ijzc ≤ w0

[ij] + x[ij] ∀(ij) ∈ F (3.22)

x[ij] ∈ Z+ ∀[ij] ∈ E

zc ∈ R+ ∀c ∈ C

yk
ij ∈ R+ ∀(ij) ∈ F, ∀k ∈ K

Constraints (3.21) ensure that for each arc (ij), the total slack reserved on the di-

rected cycles using the reverse arc (ji) is at least the total flow on (ij). Constraints

(3.22) ensure that capacity installed on edge [ij] is large enough to accommodate the

flow routed on arc (ij) as well as the slack reserved for directed cycles using the arc.

If constraints (3.21) and the directed cycle variables z are dropped from SDC, then we

obtain NDP. No cost is associated with the directed cycle variables, since we wish to com-

pare the cost of SDC with that of NDP, and flow is routed using directed cycle variables

only if there is a failure.

Since the SDC has exponentially many directed cycle variables, not all variables can

be included in the model when solving large instances. Selecting a small subset of the

variables a priori and solving the model with these variables can result in suboptimal so-

lutions. In Section 4.1.2.1, we develop a column generation approach (see Section 1.4)

that introduces the directed cycle variables into the SDC as they are needed. To solve

larger instances efficiently, we reformulate the SDC using path variables rather than arc

variables to model flow. This reduces the number of constraints, and introduces expo-

nentially many path variables; the new variables can also be priced as needed via column

generation (Section 4.1.2.2).
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Defining u, v, w are the corresponding dual variables of the LP relaxation of SDC, the

path formulation is as follows.

min
∑

(ij)∈F

∑

k∈K

∑

p∈Pk

dkδp
ije

k
ijyp +

∑

[ij]∈E

h[ij]x[ij]

(wk)
∑

p∈Pk

yp = 1 ∀k ∈ K (3.23)

(uij)
∑

k∈K

∑

p∈Pk

dkδp
ijyp −

∑

c∈C

αc
jizc ≤ 0 ∀(ij) ∈ F (3.24)

(vij)
∑

k∈K

∑

p∈Pk

dkδp
ijyp +

∑

c∈C

αc
ijzc ≤ w0

[ij] + y[ij] ∀(ij) ∈ F (3.25)

yp ∈ R+ ∀p ∈ Pk, ∀k ∈ K

x[ij] ∈ Z+ ∀[ij] ∈ E

zc ∈ R+ ∀c ∈ C

Constraints (3.23) ensure the demand for each commodity is satisfied for the no-failure

scenario. Constraints (3.24) ensure that sufficient slack is allocated to directed cycles to

cover all no-failure flow on each arc. Constraints (5.6) ensure that for each arc, sufficient

capacity is installed on the edge for the slack introduced on directed cycles and the no-

failure flow on the arcs.

3.4.3.2 Related work

In Grover and Stamatelakis (1998), the authors first determine edge capacities for the

no-failure scenario, and then add sufficient capacity on undirected p-cycles to protect

working edge capacities, see Section 3.4.2. Their approach differs from ours (SDC)

in the following aspects. Firstly, they protect working capacities and not flows; hence

their model does not utilize existing slack on the edges of the network. Secondly, their

model allows the undirected p-cycles to reroute disrupted flow on the chords. Thirdly,

they propose a hierarchical scheme which is less capacity-efficient that our integrated

scheme; see Chapter 5 for a comparison.

A related combinatorial survivable graph problem is studied in Ellinas et al. (2000),
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where the edges of a graph are covered with directed cycles. The authors show that

a bridge-less undirected planar graph1 can be decomposed into directed cycles where

each edge is used exactly twice (once in each direction). They conjecture that this result

also applies to any bridge-less graph and give a heuristic for finding directed cycle covers

of undirected graphs. In Médard et al. (2002), the authors cover the arcs of a directed

graph using an overlay graph2. These works do not take into consideration demands,

flows, capacities, or costs.

3.5 Conclusions

In this chapter, we formally defined the capacitated survivable network problem, and

introduced both hierarchical and integrated frameworks. We reviewed the literature on

designing survivable networks, focusing on several protection schemes for designing sur-

vivable networks. We also presented our framework that uses directed cycles as failure-

flow patterns. In Chapter 4, we study its mixed-integer formulation in detail, and develop

facet-defining inequalities for its cut-set and arc-set polyhedra.

1A graph is bridge-less if its nodes can not be partitioned into two groups such that only one edge
connects them.

2A graph superimposed on the original graph.
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Chapter 4

Capacitated survivable network

design using directed cycles

In this chapter, we study the mixed-integer programming formulation for SDC. Most of

these results have been published in Rajan and Atamtürk (2004). In this methodology,

sufficient slack is explicitly introduced on the directed cycles of the network when flow

routing decisions are made. In case of a failure, flow is rerouted along the slacks reserved

on directed cycles.

We focus on a polyhedral approach. In particular, we study the cut-set and arc-

set polyhedra for SDC, and describe strong valid inequalities that use the survivability

requirements. We present a computational study with a branch-and-cut algorithm for

SDC. This algorithm also prices the path and directed cycle variables using a column

generation approach.

We first present the hierarchical optimization problem, and then extend it to the in-

tegrated optimization framework. The proposed models, and the corresponding pricing

problems, are discussed in Section 4.1. In Section 4.2, valid inequalities that explic-

itly consider the survivability requirements are described. These inequalities are used

in a branch-and-cut algorithm to strengthen the linear programming relaxations of the

formulations. In Section 4.3, we present computational results with the branch-and-cut

algorithm, which also prices the exponential class of variables. We compare the capacity
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efficiency of the models and the impact of the valid inequalities in reducing the computa-

tion time when used as cutting planes. In Section 4.4, we conclude with a summary and

directions for future research.

4.1 Models

In this section, we consider two mixed-integer programming models for designing capac-

itated survivable networks using directed cycles, see Section 3.4.3 for an introduction.

The integrated approach was introduced in Section 3.4.3.1; we discuss the hierarchical

approach here for the purpose of comparison.

4.1.1 Hierarchical approach

In the first stage of the hierarchical approach, the capacitated network design problem

without survivability requirements (NDP) is solved. In the second stage, an optimal so-

lution to the NDP (a vector of flows and edge capacities) is used as input to a spare

capacity assignment model; sufficient slack is reserved on directed cycles so the flow

on each arc can be safely rerouted along these cycles. Thus, this scheme is the spare

capacity assignment problem for designing survivable networks using directed cycles; we

present the formulation here for the sake of completeness.

Let G = (V,E) be an undirected graph with node set V and edge set E. Let F be

the set of all ordered pairs (arcs) from E, i.e., F = {(ij), (ji) : [ij] ∈ E}. We use (ij) to

denote the arc from node i to node j, and [ij] to denote the edge between nodes i and

j. Let G′ = (V, F ) denote the directed graph.

Define the capacity variable x[ij] as the amount of capacity installed on edge [ij]. Let

h[ij] be the cost of installing unit capacity on edge [ij] ∈ E. Let C be the set of directed

cycles of G′. For directed cycle c, we define the variable zc to denote the amount of slack

reserved on all arcs of cycle c. We use slack to refer to fractional capacity that is reserved

to cover no-failure flows; z are modeled as continuous variables. Let αc
ij be 1 if directed

cycle c includes arc (ij), and 0 otherwise.
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Let g0
ij denote the pre-existing amount of demand routed through arc (ij) ∈ F . We

use w0
[ij] to denote the pre-existing capacity on edge [ij] ∈ E.

The hierarchical survivable network design problem using directed cycles (HDC) is

formulated as

min
∑

[ij]∈E

h[ij]x[ij]

s.t. :
∑

c∈C

αc
jizc ≥ g0

ij ∀(ij) ∈ F (4.1)

g0
ij +

∑

c∈C

αc
ijzc ≤ w0

[ij] + x[ij] ∀(ij) ∈ F (4.2)

x[ij] ∈ Z+ ∀[ij] ∈ E

zc ∈ R+ ∀c ∈ C

In HDC, spare capacity on a directed cycle provides coverage for flows in the reverse

direction to the arcs on the cycle; see Figure 3.3. Constraints (4.1) ensure that for each

arc (ij) the total slack reserved on the directed cycles using the reverse arc (ji) is at least

the total flow on (ij). Constraints (4.2) ensure that total capacity installed on edge [ij] is

large enough to accommodate the flow routed on arc (ij) as well as the slack reserved

for directed cycles containing the arc.

4.1.2 Integrated approach

We use the path formulation of the integrated optimization model for SDC, see Sec-

tion 3.4.3.1. This model makes flow routing and capacity installation decisions for no-

failure and failure cases simultaneously. Thus, the integrated model gives a network with

cost that is at most the optimal cost of the hierarchical scheme.

SDC (see Section 3.4.3.1 for the formulation) has only one more constraint (3.21) for

each arc than the NDP. This is a big advantage of the model in being able to solve large

problem instances.

However, the number of directed cycle variables is exponential in the number of arcs,

and all of the variables can not be included in the formulation when solving large in-
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stances. Therefore, we develop a column generation method to include the directed

cycle variables in the formulation as they are needed when solving its linear program-

ming (LP) relaxation. Furthermore, in a path formulation, the number of path variables is

also exponential in the number of arcs. Again, they are handled by a column generation

scheme. We next discuss the pricing problem for the directed cycle and path variables.

4.1.2.1 Pricing directed cycle variables

Given an LP relaxation solution (y, z, x) to SDC (see Section 3.4.3.1), we search for a

directed cycle c in G′ that has at least three arcs such that zc has a negative reduced cost,

or prove that no such directed cycle exists. Let (u, v) be the dual variables corresponding

to constraints (3.24) and (3.25), respectively.

Each arc (ij) on directed cycle c causes the variable zc to appear twice in the formu-

lation: in constraint (3.24) for arc (ji) with coefficient −1, and in constraint (3.25) for arc

(ij) with coefficient +1. Hence, the reduced cost of directed cycle c is
∑

ij∈F (uji − vij).

Let qij = uji − vij be the cost of arc (ij) ∈ F . Notice that since u, v ≤ 0, q is unrestricted

in sign.

Ideally, we wish to find a directed cycle with minimum reduced cost. This can be for-

mulated as minc∈C{
∑

(ij)∈F ((uji − vij)α
c
ij}, where C is the set of all directed cycles of G′

of length greater than two. We refer to the problem of finding the minimum reduced-cost

directed cycle, with weights as defined above, as the minimum cost cycle problem. Since

qij = uji − vij may be positive or negative, this problem is equivalent to finding the min-

imum cost simple directed cycle with more than two arcs on a network with unrestricted

costs. This problem is known to be NP-hard by reduction from the hamiltonian path

problem (HPP), see Garey and Johnson (1979).

To price directed cycles, it is sufficient to identify negative reduced-cost directed cy-

cles, rather than find one with minimum cost.

Definition 4.1 Directed cycle pricing problem (CPP): Given a directed graph G′ = (V, F )

and a cost function q : F 7→ R, either find a negative-cost directed cycle in G′ with at least

three arcs, or conclude that no such directed cycle exists.
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CPP can solved with a variant of the Floyd-Warshall algorithm (Ahuja et al. 1993) that

ignores directed cycles with two arcs in O(|V |3). A delayed column generation approach

that finds negative cost directed cycles with at least three arcs is developed and used to

add the cycle variables into the formulation as needed.

4.1.2.2 Pricing path variables

The pricing problems of the flow variables are disjoint for each commodity k ∈ K and

therefore can be solved separately. Given a dual solution (u, v, w) to the LP relaxation

of the path formulation of SDC (see Section 3.4.3.1), the reduced cost of a path variable

yp, p ∈ Pk is

∑

(ij)∈F

(ekij − uij − vij)d
kδp

ij − wk

Since u, v ≤ 0, ζ = min{
∑

(ij)∈F (ekij − uij − vij)d
kδp

ij : p ∈ Pk} is an sk, tk shortest

path problem with non-negative weights, and can be solved efficiently using Dijkstra’s

algorithm (Ahuja et al. 1993). If ζ < wk, then the path variable corresponding to an

optimal sk, tk path has a negative reduced cost, and is added to the restricted formulation.

4.2 Strong valid inequalities

In this section, we describe inequalities that utilize the directed cycle variables for ensur-

ing survivability of the network. For an overview of cutting-plane algorithms, see Sec-

tion 1.5. Since the integrated model (SDC) produces solutions with lower cost than the

hierarchical model HDC, we develop inequalities for SDC.

We study the cut-set and arc-set polyhedra of SDC to develop strong valid inequali-

ties. We develop various classes of inequalities for the cut-set polyhedra, and show that

one class is facet-defining for the polyhedron of SDC under mild conditions. We extend

these inequalities to k-partition inequalities (k = 2 for a cut set).

Before we present these results, we briefly discuss how the arc-set inequalities de-

veloped for NDP in Chapter 2 can be extended to the arc-set polyhedra of SDC. This
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class of valid inequalities is derived from the the capacity constraints (3.22). Inequalities

that completely describe the arc set of NDP, conv{yij ∈ RK
+ , x[ij] ∈ Z+ :

∑

k∈K dkyk
ij ≤

x[ij], y
k
ij ≤ 1, ∀k ∈ K}, are given in Magnanti et al. (1993). A linear-time separation algo-

rithm for these inequalities is presented in Chapter 2. These inequalities are the residual

capacity inequalities, and are of the form

∑

k∈H

dk(1 − yk
ij) ≥ r(d(H))(dd(H)e − x[ij]), (4.3)

for all H ⊆ K.

It can be shown that all non-trivial facets of conv{yij ∈ RK
+ , z ∈ RC

+, x[ij] ∈ Z+ :

∑

k∈K dkyk
ij +

∑

c∈C zc ≤ x[ij], y
k
ij ≤ 1, ∀k ∈ K} have zero coefficient for the unbounded

continuous variables zc (Atamtürk 2003b). Therefore, residual capacity inequalities (4.3)

are the only class of cutting planes for SDC that can be derived from the arc set.

4.2.1 Example to illustrate partition inequalities

We present a small example that we will use to illustrate various partition inequalities

developed in Sections 4.2.2 and 4.2.3. Consider the graph G with V = {i, j, k, `} and

E = {[ij], [jk], [k`], [i`], [j`]}, see Figure 4.1. In this example, there are 3 commodities:

(s1, t1, d1) = (i, `, 1); (s2, t2, d2) = (j, `, 0.4); (s3, t3, d3) = (k, j, 1.4).

Suppose that, in the LP solution, all demands are satisfied using the arcs directly

connecting the source nodes to the destination nodes, i.e., y1
i` = 1, y2

j` = 0.4, y3
kj =

1.4; and survivability is ensured using directed cycle ijk`i with slack 1 and cycle jk`j

with slack 0.4. Using zij to indicate the total slack reserved on arc (ij), and defining z

accordingly for other arcs, we have zij = 1, zjk = 1.4, zk` = 1.4, z`i = 1, and z`j = 0.4.

4.2.2 2-partition inequalities

We derive the following valid inequalities for SDC from its 2-commodity 2-partition relax-

ations, see Section 1.6 for a precise definition of cut sets. Let (A,B) be a non-empty

partition of the nodes of G. Let [AB] be the edges with one end in A, and the other in B;

corresponding to these edges, let AB be the arcs directed from A to B, and BA be the
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Figure 4.1: Small example
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arcs directed from B to A.

Let dA denote the total supply in A for nodes B (referred to as commodity A), and

dB denote the total supply in B for nodes A (referred to as commodity B). We assume

without loss of generality that dA ≥ dB, since A and B were chosen arbitrarily. Let yA
ij and

yB
ij denote flow on arc (ij) for commodities A and B, respectively; zij the slack reserved

for directed cycle variables on arc (ij); and x[ij] the capacity installed on edge [ij]. We

model the 2-commodity 2-partition relaxation of SDC as

yA(AB) − yA(BA) = dA (4.4)

yB(BA) − yB(AB) = dB (4.5)

yA
ij + yB

ij + zij ≤ x[ij] ∀(ij) ∈ AB ∪BA (4.6)

0 ≤ yA
ij + yB

ij ≤ zji ∀(ij) ∈ AB ∪BA (4.7)

z(AB) = z(BA) (4.8)

Constraints (4.4) and (4.5) are obtained by aggregating the flow balance constraints

across the partition. Constraints (4.6) and (4.7) are the capacity and survivability con-

straints for the arcs in the partition. Constraint (4.8) states that the total slack reserved

for directed cycles across the partition is the same in either direction, since any directed

cycle that goes across the partition (using arcs in AB) has to come back across the
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partition (using arcs in BA), see Figure 4.2.

Let F2 denote the convex hull of all (y ∈ R4|AB|, z ∈ R2|AB|, x ∈ Z|AB|) satisfying (4.4),

(4.5), (4.6), (4.7), and (4.8). All feasible points of SDC are contained in F2.

Figure 4.2: A 2-partition

A B

dB

dA

Before presenting the general form of the 2-partition inequalities, we motivate and

explain the simplest version of the inequalities. The total flow of commodity A on arcs in

AB must be at least dA. Furthermore, total slack reserved for directed cycles on the arcs

AB (going from A to B and back) must be sufficient to cover this flow. Consequently, the

net capacity across this partition must be at least the sum of these two values, each of

which is at least dA. Finally, since the capacity variables are integral, capacity across the

partition is lower bounded by d2dAe, i.e.,

x([AB]) ≥ d2dAe. (4.9)

The following theorem states that this lower bound is not only tight, but also that inequality

(4.9) is strong. Let G′
A = (A,FA), G′

B = (B,FB) be the sub-graphs defined by the node

sets A and B, respectively. Define r̄A = r(dA) = dA − bdAc.

Theorem 4.2 For any non-empty 2-partition (A,B) of G with |[AB]| ≥ 3, the 2-partition

inequality (4.9) is facet-defining for the convex hull of feasible solutions of SDC if the two

sub-graphs G′
A and G′

B are 2-connected, and either r̄A > 1/2 or dA > max{dB, 2}.

Proof See Appendix C.

Defining ηi = d2die and ri = r(2di) = 2di − b2dic for i ∈ {A,B}, we can generalize

(4.9) to include flow and directed cycle variables in both directions of the 2-partition.
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Theorem 4.3 For H1 ⊆ AB, H2 ⊆ BA, the 2-partition inequalities

rAx([H1]) + (1 − rA)x([H2]) + yA(AB\H1)

+z(AB\H1) − yA(H2) − yA(BA\ [H1]) ≥ rAηA

(4.10)

rBx([H2]) + (1 − rB)x([H1]) + yB(BA\H2)

+z(BA\H2) − yB(H1) − yB(AB\ [H2]) ≥ rBηB

(4.11)

are valid for F2.

Proof See Appendix C.

When H1 = AB and H2 = ∅, inequality (4.10) reduces to (4.9). For a fixed 2-partition

(A,B), the separation problem of (4.10) is easily solved as follows. Given (y, z, x), if

rAx[ij] < yA
ij + zij − yA

ji for (ij) ∈ AB, then we include (ij) in H1; if (1 − rA)x[ij] < yA
ij

for (ij) ∈ BA, then we include (ij) in H2. The separation for inequality (4.11) is similar.

Inequalities (4.10) are not necessarily facet-defining for F2; however, they are always

facet-defining for the convex hull of the 1-commodity 2-partition relaxation of SDC, i.e.,

yA(AB) − yA(BA) = dA (4.12)

yA
ij + zij ≤ x[ij] ∀(ij) ∈ AB ∪BA (4.13)

0 ≤ yA
ij ≤ zji ∀(ij) ∈ AB ∪BA (4.14)

z(AB) = z(BA) (4.15)

under mild conditions. This is stated as Theorem 4.4.

Theorem 4.4 Let F1 denote the convex hull of points satisfying the 1-commodity 2-

partition relaxation; i.e., all (y ∈ R2|AB|, z ∈ R2|AB|, x ∈ Z|AB|) satisfying (4.12)-(4.15).

The inequality

rAx([H1]) + yA(AB\H1) + z(AB\H1) − yA(BA\ [H1]) ≥ rAηA

is facet-defining for F1 if and only if rA > 0 and H1 6= ∅.

Proof See Appendix C.

We now illustrate these inequalities using the example introduced in Section 4.2.1.

Consider the fractional solution illustrated in Figure 4.3: y1
i` = 1, y2

j` = 0.4, y3
kj = 1.4;
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and zij = 1, zjk = 1.4, zk` = 1.4, z`i = 1, z`j = 0.4. Installing capacities fractionally gives

x[ij] = 1, x[i`] = 1, x[jk] = 1.4, x[j`] = 0.4, x[k`] = 1.4. This solution satisfies all of the

constraints (3.20)-(3.22).

Figure 4.3: Example: 2-partition inequality
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Now consider the 2-partition defined as A = {i, j, k}, B = {`}. For this partition,

dA = 1.4 and dB = 0. Thus, we have ηA = 3, rA = 0.8 and the corresponding inequality

(4.9) is

x[i`] + x[j`] + x[k`] ≥ 3, (4.16)

which is violated by the given fractional solution. Suppose we increase x[j`] until inequality

(4.16) is no longer violated. Now, the allocation to capacity variables is x[ij] = 1, x[i`] =

1, x[jk] = 1.4, x[j`] = 0.6, x[k`] = 1.4. By enumerating all 2-partitions of the graph, it

can be seen that this fractional solution is not violated by any 2-partition inequality (4.9).

For the same 2-partition A = {i, j, k}, B = {`}, inequality (4.10) with H1 = {(i`), (k`)},

H2 = ∅ is

0.8x[i`] + 0.8x[k`] + y1
j` + y2

j` − y1
`j − y2

`j + zj` ≥ 2.4 (4.17)

This inequality with continuous variables is violated by the new fractional point. Now,

suppose we increase x[k`] until inequality (4.17) is no longer violated. Now, the capacity

variables take the values x[ij] = 1, x[i`] = 1, x[jk] = 1.4, x[j`] = 0.6, x[k`] = 1.5. We re-
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sume this example in Section 4.2.3 after introducing a more general class of inequalities.

4.2.3 3-partition inequalities

In this section we show how to generalize the 2-partition inequalities for 3-partitions of the

graph. The ideas presented here can be extended to k-partitions for k > 3 as well.

4.2.3.1 Mixed-integer inequalities

Consider a non-empty 3-partition (A,B,C) of the nodes of G. As before, AB is defined

as the arcs directed from A to B; the other arc and edge sets are defined in the same way.

Further, we divide each set of edges into two groups; e.g., [AB] into [AB1] and [AB2].

For each proper subset U of {A,B,C}, we again let dU denote the total supply of U , i.e.,

dU = {
∑

k dk : sk ∈ U, tk ∈ V \U}. As before, ηU = d2dUe and rU = r(dU ) = 2dU−b2dUc.

Now, each of the six proper subsets of {A,B,C} results in a non-empty 2-partition

(U, V \ U) of the nodes of G. For each of them, we obtain a subclass of intermediate

2-partition inequalities as follows. Choose H1 = {(ij) : i ∈ U, j ∈ V \ U, [ij] ∈ [AB1] ∪

[BC1] ∪ [AC1]}, and H2 = ∅. Below we present two such inequalities, corresponding to

(U = {A}, H1 = AB1 ∪AC1) and (U = {B}, H1 = BA1 ∪BC1), respectively.

rAx([AB1] ∪ [AC1])+y
A(AB2 ∪AC2)

+ z(AB2 ∪AC2) − yA(BA2 ∪ CA2) ≥ rAηA

(4.18)

rBx([BA1] ∪ [BC1])+y
B(BA2 ∪BC2)

+ z(BA2 ∪BC2) − yB(AB2 ∪ CB2) ≥ rBηB

(4.19)

Define η = d rAηA+rBηB

rA+rB
e and r̄ = rAηA+rBηB

rA+rB
− b rAηA+rBηB

rA+rB
c. Adding (4.18) and (4.19),

and applying mixed-integer rounding (Section 1.5.2) to the resulting inequality, we obtain

the 3-partition inequality

r̄(rA + rB) x([AB1])+rAx([AC1]) + rBx([BC1])

+yA(AB2 ∪AC2)+y
B(BA2 ∪BC2) − yA(BA2 ∪ CA2) − yB(AB2 ∪ CB2)

+ z(AB2 ∪BA2 ∪AC2 ∪BC2) ≥ r̄ η(rA + rB).

(4.20)
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There are exponentially many inequalities of the form (4.20) depending on how [AB],

[BC], and [AC] are partitioned into groups. Nevertheless, for a fixed 3-partition (A,B,C),

the separation problem for (4.20) is simple. Given (y, x, z), (ij) ∈ AB is included in AB1

if r̄(rA +rB)x[ij] < yA
ij −y

A
ji−y

B
ij +yB

ji +zij +zji; and in AB2 otherwise. On the other hand,

(ij) ∈ BC is included in BC1 if rBx[ij] < yB
ij − yB

ji + zij ; and in BC2 otherwise. Finally,

(ij) ∈ AC is included in AC1 if rAx[ij] < yA
ij − yA

ji + zij , in AC2 otherwise.

Since there are six proper subsets of {A,B,C} which can be used to form the in-

termediate 2-partition inequalities, we can describe fourteen more 3-partition inequalities

similar to (4.20) for the 3-partition (A,B,C).

4.2.3.2 Pure-integer inequalities

We present another class of 3-partition inequalities written in terms of the integral capacity

variables; that is, we let [AB1] = [AB], [AC1] = [AC] and [BC1] = [BC]. Defining H1 and

H2 as before, we have the three 2-partition inequalities with only capacity variables

x([AB]) + x([AC]) ≥ d2 max{dA, dBC}e,

x([AB]) + x([BC]) ≥ d2 max{dB, dAC}e,

x([AC]) + x([BC]) ≥ d2 max{dC , dAB}e.

Let θ = d2 max{dA, dBC}e+d2 max{dB, dAC}e+d2 max{dC , dAB}e. By adding these three

inequalities, dividing the sum by two and rounding up the right hand side, we obtain the

3-partition inequality

x([AB]) + x([AC]) + x([BC]) ≥ d
θ

2
e (4.21)

We now illustrate inequalities (4.21) using the example in Section 4.2.1. Consider the

fractional solution y1
i` = 1, y2

j` = 0.4, y3
kj = 1.4; zij = 1, zjk = 1.4, zk` = 1.4, z`i = 1,

z`j = 0.4; and x[ij] = 1, x[i`] = 1, x[jk] = 1.8, x[j`] = 0.6, x[k`] = 1.5; see Figure 4.4.

By enumerating among all subsets H1, H2 for all the 2-partitions, it can be seen

that no 2-partition inequality violates this solution. However, for 3-partition A = {i, j},

B = {k}, C = {`}, we have dA = 1.4, dB = 1.4, dC = 0, dAB = 1.4, dAC = 0, dBC = 1.4.
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Figure 4.4: Example: 3-partition inequality
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Correspondingly, θ = 9 and the 3-partition inequality (4.21)

x[i`] + x[j`] + x[jk] + x[k`] ≥ d9/2e

is violated by the fractional point.

4.3 Computational results

In Section 4.3 we present computational results with a branch-and-cut generation algo-

rithm for solving the models introduced in Section 4.1. This algorithm also prices the path

and directed cycle variables in a column generation scheme. We compare the capacity

requirements of the models and test the effectiveness of the valid inequalities given in

Section 4.2 in reducing the solution times when used as cutting planes.

The algorithm is implemented using the callable library of CPLEX Version 8.1 Beta. All

experiments are done on a 2GHz Intel Pentium 4 Linux workstation with 1GB RAM. The

data set consists of random instances of networks with number of nodes (|V |) ranging

from 5 to 12. The instances have 75% edge density and 50% demand density, i.e., each

of the |V |(|V |−1)/2 edges (and both the directed arcs corresponding to that edge) exists

with probability .75, and each of the |V |(|V | − 1) demand pairs exists with probability 0.5.

The demand values are chosen from 0.1× IntUni[1, 20].
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The directed cycle variables with negative reduced cost are generated as explained

in Section 4.1.2.1. Since CPLEX does not allow addition of variables to the formulation in

the branch-and-bound tree, directed cycle variables are generated only at the root node

of the tree. Since HDC is the hierarchical counterpart of SDC, directed cycle variables are

priced even in HDC. In Section 5.4, we present a study on the effect of column generation

of directed p-cycles as failure-flow pattern variables in the context of SDP.

In the first experiment we compare NDP with and the hierarchical and integrated

models of survivable network design models using directed cycles, HDC and SDC, re-

spectively. In Table 4.1 we present the time taken to solve the three models and the

total capacity installed with each model. If a problem is solved within one hour, then we

report the objective value of the solution and the elapsed CPU time in seconds (time);

otherwise, we report the objective value of the best known feasible solution (zub), and

the gap (endgap) between this solution and the best lower bound at termination (zlb) as

a percentage of the best lower bound, i.e., endgap = 100 × (zub− zlb)/zlb.

Table 4.1: Hierarchical and integrated approaches

size time (endgap) best feasible solution (zub)
|V | NDP HDC SDC NDP HDC SDC

5 0.03 0.01 0.06 50.5 110.3 103.5
6 0.16 0.02 0.23 129.5 251.7 235.6
7 0.27 0.03 2.29 103.4 222.3 189.4
8 2.88 0.04 14.0 146.6 286.2 259.6
9 517.1 0.15 20.9 172.7 364.9 311.6

10 ( 1.6 ) 0.21 ( 0.3 ) 235.8 457.6 432.4
11 1216 0.16 ( 0.8 ) 289.3 562.7 527.1
12 ( 3.1 ) 0.30 ( 2.7 ) 326.0 641.2 592.1

Comparing the capacity requirements of the models, HDC needs about 100% more

capacity than the no-survivability model NDP, whereas SDC requires on the average 80%

more capacity. Comparing the models in terms of ease of solvability, we see that HDC

takes the least amount of time. However, we first need to solve NDP before we can

use its solution as an input to HDC. Interestingly, SDC is not any harder to solve than

NDP, see Table 4.1. This is important, since SDC incorporates survivability. Later in this
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section, we will also see that SDC scales well with increasing network size when solved

in a branch-and-cut framework using the cutting planes proposed in Section 4.2.

In the next experiment, we investigate the effect of the valid inequalities described in

Section 4.2 in reducing the number of branch-and-bound nodes and solution times, when

used as cutting planes to improve the linear programming relaxations. Residual capacity

inequalities are added using the linear-time separation method given in Atamtürk and Ra-

jan (2002) for each arc at the root node of the branch-and-bound tree. We enumerate all

2-partitions with at most three nodes in one partition and all 3-partitions with at most two

nodes in two of the partitions; and add the corresponding inequalities with only capacity

variables whenever they are violated in the tree.

In Table 4.2 we report the number of cuts added (cuts added), improvement of the

integrality gap at the root node (root improvement), the number of branch-and-bound

nodes (b&b nodes), and the solution times (time) or gap at termination (endgap), for runs

with and without the polyhedral cuts. The default CPLEX cuts are added in both runs.

The results for experiments using only the CPLEX cuts are reported under heading (1)

and results for experiments using both CPLEX and polyhedral cuts are reported under

heading (2). All runs have a time limit of ten hours.

Table 4.2: Effect of cutting planes

Size cuts added root improvement b&b nodes time (endgap)
|V | (1) (2) (1) (2) (1) (2) (1) (2)

5 24 20 76.5 77.1 47 36 0.06 0.06
6 22 24 30.6 100 279 0 0.23 0.01
7 34 35 24.0 72.0 2298 203 2.29 0.35
8 46 58 34.6 78.7 7060 547 14.0 1.76
9 50 47 38.1 77.3 7122 196 20.9 1.33

10 67 90 31.4 74.6 2009857 88145 4876 267
11 116 164 41.2 67.6 2177271 65744 12296 552
12 142 188 22.3 50.0 2111101 1762640 ( 2.2 ) ( 1.2 )

We see in Table 4.2 that adding polyhedral cuts more than doubles the integrality

gap improvement at the root node. This leads to significant reduction in the number of

nodes and solution time. In general, the improvement in the solution time is more than an
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order of magnitude. Based on these computations, we conclude that the cutting planes

developed in Section 4.2 improve the performance of the algorithm significantly.

In the final experiment, we tested how well the branch-and-cut generation algorithm

scales for large instances. This is significant since we are pricing an exponential class of

variables using a column generation scheme. For this experiment, we ran the algorithm

for instances ranging from 20 to 70 nodes for ten hours. In Table 4.3, we report the

number of directed cycles added (cycles added), the number of cuts added (cuts added),

percentage improvement at the root node (root improvement), total number of nodes in

the branch-and-bound tree (b&b nodes) and the gap at termination (endgap).

Table 4.3: Computations on large instances

size cycles added cuts added root improvement b&b nodes (endgap)
20 458 225 42.9 498668 ( 0.58 )
30 614 248 33.3 315777 ( 0.44 )
40 842 219 34.3 123080 ( 0.21 )
50 1450 279 26.4 27791 ( 0.26 )
60 1248 276 25.9 13328 ( 0.18 )
70 1546 292 20.8 1100 ( 0.21 )

Although none of the instances are solved to optimality, the gap at termination was

less than 1% for all instances. To some extent, the drop in the gap at termination for

larger instances can be attributed to the fact that the LP relaxations of the formulation

seem to strengthen with increasing problem size. This fact reiterates the scalability of

our model (and methodology). At the same time, the effect of our cutting planes can

not be discounted, even as problem size increases. These experiments suggest that

the proposed methodology is a computationally effective way for designing capacitated

survivable networks.

4.4 Conclusions

We introduced a new methodology for designing capacitated survivable networks that ex-

plicitly reserves slack on directed cycles. We first presented the hierarchical optimization

model, and then extended it to an integrated model that makes all routing and capacity
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decisions simultaneously. Even though the number of variables in the models is expo-

nential in the size of the input graph, they were generated in polynomial time in a column

generation framework.

We also developed strong polyhedral cutting planes for the integrated SDC model.

Finally, we compared the models and the effectiveness of the cutting planes computa-

tionally using a branch-and-cut generation algorithm. The integrated approach yielded

survivable networks with about 10% less capacity requirements than the hierarchical

scheme, and the polyhedral cuts reduced the solution times by an order of magnitude.

Our experiments suggest that the proposed methodology is a computationally effec-

tive way for designing capacitated survivable networks. At the same time, we can reduce

the capacity requirements further by considering other failure-flow patterns; for instance,

directed p-cycles to route disrupted flows when their chords fail as well. In Chapter 5, we

present the mixed-integer programming formulation for this framework, and study the cor-

responding pricing sub-problem. Preliminary computations indicate that this framework

results in survivable networks that are almost as capacity-efficient as global rerouting.

The polyhedral structure when using this more complicated failure-flow pattern is a direc-

tion of future research.
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Chapter 5

Capacitated survivable network

design using directed p-cycles

In this chapter, we present the mixed-integer programming model for designing survivable

networks using directed p-cycles (SDP). We compare this method with network design

problem without survivability requirements (NDP), global rerouting (GNP), spare capac-

ity assignment using undirected p-cycles (HUP) and survivable network design using

directed cycles (SDC).

We compare all the frameworks for designing survivable networks introduced in this

chapter with the NDP (Section 2.1) since we wish to measure the amount of extra capacity

required to enforce survivability. We include GNP (Section 3.3.1) since this is the best one

can do in terms of capacity efficiency. We incorporate HUP (Section 3.4.2) to compare

our framework with the work of Grover and Stamatelakis (1998), in which the authors

use undirected p-cycles as failure-flow patterns in a hierarchical framework. We compare

with SDC (Section 3.4.3.1) to measure improvements obtained by using directed p-cycles

over directed cycles. In Section 5.4, we present results of computational experiments that

compare the capacity efficiency and ease of solvability of these models.

Most of the work in this chapter has been published in Rajan and Atamtürk (2002).

In contrast to the failure scenario models, the hybrid models (HUP, SDC and SDP) have

almost the same number of constraints as NDP, which makes them effective for large
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instances. Even though the complexity of pricing the exponentially many directed p-cycle

variables in SDP is NP-hard (as opposed to directed cycle variables in SDC), in our

computational experiments, we are able to produce capacity-efficient survivable networks

with dense graphs up to 70 nodes.

5.1 Introduction

In Section 5.2, we introduce the new mixed-integer programming model for designing

survivable networks using directed p-cycles (SDP). This model considers routing of no-

failure flows and failure flows simultaneously by installing slacks on directed p-cycles of

the network so as to ensure survivability in the case of edge failures. Thus, this model is

very similar to SDC, except that it uses directed p-cycles as opposed to directed cycles,

as failure flow patterns. As in SDC, since only disrupted flow is rerouted, reconfiguration

of the network can be done quickly.

SDP delivers survivable networks with capacity efficiency very close to GNP, as we will

see in Section 5.4. The number of the constraints of the formulation is almost the same as

NDP, which makes the model effective for large instances. The number of the variables

is exponential in the number of edges of the graph; however, the variables are treated

implicitly by column generation. In Section 5.3, we show that the pricing complexity of the

variables is NP-hard, and discuss a polynomial-time heuristic. Using this heuristic, we

solve SDP by column generation and report successful computational experiments with

dense graphs up to 70 nodes. We conclude in Section 5.5 by summarizing this chapter,

and motivate directions for future research in Section 5.6.

5.2 Survivable network design using directed p-cycles

In this section, we present a mixed-integer programming model for SDP. Rather than

using undirected p-cycles, as in the case of HUP (Grover and Stamatelakis 1998), we

utilize directed p-cycles to introduce sufficient slack on top of the no-failure flows. As

opposed to HUP, which is hierarchical, this scheme is integrated, in the sense that it
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makes all decisions simultaneously.

A directed p-cycle provides coverage for flows in the reverse direction for the arc on

the p-cycle, see arc (ba) in Figure 5.1. A directed p-cycle provides only one recovery

path for the flow on a chord, see arc (cd) in Figure 5.1. However, slack introduced for the

directed p-cycle in the reverse direction also provides coverage for the flow on arc (cd).

Figure 5.1: A directed p-cycle

a

b

c

d

Let G = (V,E) be an undirected graph with node set V and edge set E; and let F be

the set of all ordered pairs (arcs) from E, i.e., F = {(ij), (ji) : [ij] ∈ E}. We use (ij) to

denote the arc from node i to node j, and [ij] to denote the edge between nodes i and

j. We use G′ = (V, F ) to denote the directed graph. Let K be the set of commodities.

Let {(sk, tk, dk)}k∈K be the commodity triples of source and destination nodes sk and tk,

and dk be the supply at sk for tk, k ∈ K. Let bki be the supply of commodity k at node i,

i.e., bk
sk = dk, bk

tk
= −dk, and bki = 0 for i ∈ V \ {sk, tk}.

We define variable yk
ij as the fraction of commodity k routed through arc (ij) ∈ F .

Let ekij be the cost associated with routing each unit of commodity k ∈ K. We define the

capacity variable x[ij] as the amount of capacity installed on edge [ij]; and let h[ij] be the

cost of installing unit capacity on edge [ij] ∈ E. Let C be the set of directed p-cycles of G′.

For c ∈ C, we define the variable zc to denote the amount of slack reserved on directed

p-cycle c. We use slack to refer to fractional capacity that is reserved to cover no-failure
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flows; z are modeled as continuous variables. Let αc
ij be 1 if directed p-cycle c includes

arc (ij), and 0 otherwise. Let ρc
[ij] be 1 if edge [ij] is a chord to directed p-cycle c, and 0

otherwise. We use w0
[ij] to denote the pre-existing capacity on edge [ij] ∈ E. SDP can

now be formulated as follows.

min
∑

(ij)∈F

∑

k∈K

dkekijy
k
ij +

∑

[ij]∈E

h[ij]x[ij]

∑

j:(ij)∈F

dkyk
ij −

∑

j:(ji)∈F

dkyk
ji = bki ∀i ∈ V, ∀k ∈ K (5.1)

∑

k∈K

dkyk
ij −

∑

c∈C

ρc
[ij]zc −

∑

c∈C

αc
jizc ≤ 0 ∀(ij) ∈ F (5.2)

∑

k∈K

dkyk
ij +

∑

c∈C

αc
ijzc ≤ w0

[ij] + x[ij] ∀(ij) ∈ F (5.3)

x[ij] ∈ Z+ ∀[ij] ∈ E

zc ∈ R+ ∀c ∈ C

yk
ij ∈ R+ ∀(ij) ∈ F, ∀k ∈ K.

Constraints (5.2) ensure that for each arc (ij), the total flow is no more than the total

slack installed on the directed p-cycles which include arc (ji) or chord [ij]. Constraints

(5.3) ensure that capacity installed on edge [ij] is large enough to accommodate the flow

routed on arc (ij) as well as the slack introduced on the arc by directed p-cycles.

Interestingly, in contrast to GNP, SDP requires only one constraint more for each

arc than NDP. We assume that C is a restricted set of directed p-cycles from graph G′ =

(V, F ). With this restricted set, we denote the formulation as SDPb. However, the number

of cycles in a graph, and hence the number of directed p-cycle variables in the formulation

is exponential in the number of the arcs. In Section 5.3, we discuss how all the directed

p-cycle variables can be handled.

The example in Figure 5.2 emphasizes the importance of determining slacks on di-

rected p-cycles, rather than covering working edge capacities with undirected p-cycles as

in Grover and Stamatelakis (1998). Here, the flow on each arc (ac), (cb), and (ba) equals

1. Since installed capacity on an edge allows flow in both directions up to capacity. Rout-
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ing one unit using a directed p-cycle in the counter-clockwise direction (from a to b to c)

covers all of the flow on the network and requires no additional capacity. Thus, using

SDP, the network in Figure 5.2 is survivable with a total capacity of 3. On the other hand,

covering installed capacities with undirected p-cycles requires installing one additional

unit on each edge, thus doubling the installed capacity.

Routing slacks on directed p-cycles to cover failure flows will lead to lower capacity

than covering no-failure capacity, even without the assumption that installed capacity on

an edge allows flow in both directions up to capacity.

Figure 5.2: A small survivable network
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Consequently, SDP produces survivable networks that are more capacity-efficient

than HUP for two reasons: SDP determines slack on directed p-cycles to cover flows

rather than using undirected p-cycles to cover working edge capacities; and SDPb con-

siders the routing of no-failure flows when determining excess capacity installation in an

integrated framework. Indeed our computational experiments indicate that the capacity

efficiency delivered by SDP is very close to GNP, see Section 5.4.

5.3 A column generation approach

Since there exist exponentially many directed p-cycle variables, not all variables can be

included in the model when solving large instances. Selecting a small subset of the

variables a priori and solving the model with these variables can result in suboptimal

solutions, as we show in Section 5.4. Therefore, we develop a column generation ap-

proach and introduce the directed p-cycle variables into SDPb as they are needed (see

Section 1.4). We refer to this formulation, in which all directed p-cycles have been added
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as needed, as SDP. To solve larger instances efficiently, we reformulate SDP using path-

based flow variables, rather than arc-based flow variables. This reduces the number of

constraints, but introduces exponentially many path variables; which can also be gener-

ated, as needed, via column generation.

In path-based formulations, yp indicates the fraction of commodity routed on path p,

and Pk denotes the set of paths from sk to tk. For any path p, δp
ij = 1 if it includes arc

(ij), and 0 otherwise. We reformulate SDP using a path formulation as follows.

min
∑

(ij)∈F

∑

k∈K

∑

p∈Pk

dkδp
ije

k
ijyp +

∑

[ij]∈E

h[ij]x[ij]

(wk)
∑

p∈Pk

yp = 1 ∀k ∈ K (5.4)

(uij)
∑

k∈K

∑

p∈Pk

dkδp
ijyp −

∑

c∈C

ρc
[ij]zc −

∑

c∈C

αc
jizc ≤ 0 ∀(ij) ∈ F (5.5)

(vij)
∑

k∈K

∑

p∈Pk

dkδp
ijyp +

∑

c∈C

αc
ijzc ≤ w0

[ij] + x[ij] ∀(ij) ∈ F (5.6)

yp ∈ R+ ∀p ∈ Pk, ∀k ∈ K

x[ij] ∈ Z+ ∀[ij] ∈ E

zc ∈ R+ ∀c ∈ C,

where u, v, w are the corresponding dual variables of the LP relaxation of SDP. Con-

straints (5.4) ensure the demand for each commodity is satisfied for the no-failure sce-

nario. Constraints (5.5) ensure that sufficient slack is allocated to directed p-cycles to

cover all no-failure flow on each arc. Constraints (5.6) ensure that, for each arc, sufficient

capacity is installed on the edge for the slack introduced on the directed p-cycle and the

no-failure flow on the arc.

This formulation has 2|F | + |K| constraints, as compared with the 2|F | + |K||V | con-

straints in the arc formulation. We can now solve much larger instances because of the

smaller number of constraints. However, the reduction in number of constraints comes

at a price: We now have an exponential number of flow variables. In Sections 5.3.1 and

5.3.2, we study the pricing problems for directed p-cycle and flow variables, respectively.
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5.3.1 Pricing of directed p-cycle variables

Our SDP formulation needs to include all directed p-cycles that are used in the optimal

solution. Since we have no way of knowing which directed p-cycles they are a priori, we

need to price out any directed p-cycles with negative reduced cost, when solving the LP

relaxation. Given an LP-relaxation solution to SDP (y, z, x), we are interested in finding

a directed p-cycle variable zc with negative reduced cost, or prove that no such directed

p-cycle exists. Variable zc appears four times in the formulation, for each arc (ij) on

directed p-cycle c: in constraint (5.5) for arc (ji) with coefficient −αc
ij ; in constraint (5.5)

for arcs (ij) and (ji) with coefficient −ρc
[ij]; and in constraint (5.6) with coefficient αc

ij .

Therefore, for an optimal dual solution (u, v, w), the reduced cost of any variable zc is

∑

(ij)∈F

((uji − vij)α
c
ij + (uij + uji)ρ

c
[ij])

A negative reduced cost zc can be identified by finding a negative weight directed

cycle that has at least three arcs on G′ = (V, F ), where weight of arc (ij) on the directed

cycle is fa
ij = uji − vij and the weight of edge [ij] that is a chord of the directed cycle is

fh
ij = uij + uji. Since u, v ≤ 0, fa

ij is unrestricted in sign, but fh ≤ 0.

Finding a minimum reduced-cost directed p-cycle problem on the directed network

G′ = (V, F ) is trivially NP-hard, since the special case with fh = 0 for all edges corre-

sponds to the problem of finding a minimum cost directed cycle on a network that may

have negative arc costs, see Section 4.1.2.1. Fortunately, we are interested in finding

any negative reduced-cost directed p-cycle, not necessarily the one with the minimum

reduced cost.

Definition 5.1 Pricing problem of directed p-cycles (PPP): Given arc weights f a ∈ R|F |

and chord weights fh ∈ R|F |, either find a negative cost directed p-cycle with at least

three arcs, or conclude that no such directed p-cycle exists.

Theorem 5.2 The pricing problem of directed p-cycles (PPP) is NP-hard.

Proof See Appendix D.

Next, we discuss some efficient heuristics for pricing these directed p-cycle variables.
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When all chord weights fh of directed p-cycles are zero, PPP reduces to finding a neg-

ative weight (fa) directed cycle with at least three arcs, and is the same as CPP, see

Section 4.1.2.1. This can be accomplished in O(|V |3) with a simple modification to the

Floyd-Warshall algorithm for finding shortest paths in a directed graph. Thus, the pres-

ence of weights for the chords (fh) complicates the problem significantly.

However, we can use CPP as a basis for designing heuristics to PPP. Since chord

weights fh are non-positive, if we find a negative weight cycle c by assuming that fh is

zero, then directed p-cycle c has negative reduced cost. Therefore, to find negative re-

duced cost directed p-cycle variables, we solve CPP using f a and add the corresponding

directed p-cycle variables to the restricted formulation of SDP. When we exhaust all such

negative weight directed p-cycles, there can still be other negative reduced-cost directed

p-cycle variables with fa > 0.

The longer the directed p-cycle is, greater the number of chords it has, especially

for dense graphs. Thus, longer directed p-cycles have a higher tendency of having a

negative weight since fh ≤ 0. We can potentially obtain good p-cycles by changing the

weights fa in such a way that we get longer cycles when we solve the polynomial-time

negative weight directed cycle problem. One possible way of accomplishing this is by

reducing all arc weights fa by a certain constant so that the longer cycles will be in favor.

We incorporate this idea in the column generation algorithm for pricing directed p-cycle

variables that do not correspond to negative weight cycles.

However, we still price directed p-cycle variables only at the root node of the branch-

and-bound tree. It is not necessary that the integer optimal solution to SDP will include

only those directed p-cycles in the LP relaxation solution. We need to develop a branch-

and-price algorithm that solves the pricing problem for directed p-cycles at each node in

the branch-and-bound search tree.

5.3.2 Pricing of flow variables

We need to price out any path variable with a negative reduced cost, given an LP re-

laxation solution (y, z, x) to SDP. The pricing problems of the path-based flow variables
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are disjoint for each commodity k ∈ K and therefore can be solved separately. This is

exactly the same as the pricing problem for the flow variables of SDC in Section 4.1.2.2;

we repeat here for completeness.

The path variable yp appears once in constraint (5.4) with coefficient 1. Also, for each

arc (ij), the variable yp appears twice in the formulation; with coefficient δp
ij in constraint

(5.5) for arc (ij) and in constraint (5.6) for arc (ij). Since u, v, w are the dual variables

for constraints (5.5), (5.6) and (5.4), respectively, the reduced cost of a path variable

yp, p ∈ Pk is

∑

(ij)∈F

(ekij − uij − vij)d
kδp

ij − wk

Since u, v ≤ 0, ζ = min{
∑

(ij)∈F (ekij − uij − vij)d
kδp

ij : p ∈ Pk} is an (sk − tk) shortest

path problem with non-negative weights, and can be solved efficiently using Dijkstra’s al-

gorithm (Ahuja et al. 1993). If ζ < wk, then the path variable corresponding to the optimal

(sk − tk) path has a negative reduced cost, and is added to the restricted formulation.

5.4 Computational results

We present our computational experiments comparing the capacity efficiency and ease of

solvability of the models NDP, GNP, HUP, SDC, SDPb, and SDP. Our goal is to determine

whether the new method of designing survivable networks using directed p-cycles (SDP)

is a viable alternative for designing survivable telecommunication networks.

While GNP produces the most capacity-efficient survivable networks, the size of the

formulation, which essentially carries a copy of the NDP for each failure scenario, makes

it unfit for tackling problems unless they are very small. Nevertheless, in our experiments

we solve the GNP model for small instances to find the lowest capacity requirement.

For these experiments we create small instances of randomly generated graphs (of

size |V | from 5 to 15) with 75% edge density and 50% demand density; the same instances

as in Section 4.3. These networks are thus quite dense (O(|V |2) arcs) and are much more

difficult that any real-world problem instances.
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For a fair comparison of the capacity efficiency of HUP and SDPb, we solve these

models with the same set of cycles that are selected a priori. For SDC, SDPb, and HUP,

we chose the restricted set of cycle variables as follows. First, we calculate the minimum

cost spanning tree (T - using edge weights proportional to he). Then, for every edge [ij]

on the tree, we find the minimum cost cycle that uses edge [ij] and exactly one edge

6∈ T . We add these undirected cycles as undirected p-cycles to HUP. We add directed

p-cycle variables (both directions) corresponding to these undirected cycles a priori to

the formulation of SDC and SDPb.

In Table 5.1, we report the number of constraints and variables in the five formulations

for the graph with 14 nodes; we use the arc formulations. In this comparison, we see that

the formulations of NDP, SDC and SDPb are about the same size. By choice of the

restricted set of cycles, SDC and SDPb have exactly the same number of constraints.

Thus, using failure-flow patterns to design survivable networks allows us to work with

formulations of roughly the same size as the NDP. On the other hand, the formulation of

GNP is more than an order of magnitude bigger than the rest of the models. In fact, the

formulation for GNP with |V | = 5 is larger than the formulations for NDP, SDC and SDPb

with |V | = 15; see Table 5.1.

Table 5.1: Formulation sizes

|V | = 14 NDP GNP HUP SDC SDPb

constraints 342 27352 133 488 488
variables 2117 151329 105 2173 2173

We solve all of the models with CPLEX7.5 MIP solver on an Intel Pentium4 2GHz

Linux workstation with 1GB RAM with one hour CPU time limit. We do all of the compu-

tations using a best-bound node selection strategy in the branch-and-bound search tree,

and recover the best feasible solution if we do not obtain the optimal solution at the time

limit. In Table 5.2, for each instance (of size |V |), we report the solution times in CPU

seconds (time) and the best MIP solutions found (best feasible soln) for the five models.

Now, we no longer use a restricted set of directed cycle variables for SDC. We report the

optimality gap (endgap) of the best MIP solution in place of time if the branch-and-bound
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computation does not finish in one hour time limit.

Table 5.2: Solution times and capacity efficiency

|V |
time (endgap) best feasible soln

NDP GNP HUP SDC SDPb NDP GNP HUP SDC SDPb

5 0.03 0.57 0.00 0.06 0.04 50.5 90.7 131.7 103.5 110.5
6 0.16 1.27 0.00 0.23 0.19 129.5 192.0 323.9 235.6 230.8
7 0.27 23.6 0.00 2.29 1.00 103.4 143.8 210.0 189.4 160.1
8 2.88 577.1 0.00 14.0 4.18 146.6 176.8 281.2 259.6 236.0
9 517.1 ( 3.5 ) 0.00 20.9 2.88 172.7 223.9 361.7 311.6 257.3

10 ( 1.6 ) ( 13 ) 0.00 ( 0.3 ) 2.47 235.8 308.0 495.8 432.4 372.2
11 1216 ( - ) 0.00 ( 0.8 ) 42.5 289.3 ( - ) 533.9 527.1 384.7
12 ( 3.0 ) ( - ) 0.00 ( 2.7 ) 61.2 326.0 ( - ) 689.0 592.1 570.9
13 ( 1.6 ) ( - ) 0.00 ( 1.9 ) 2967 366.1 ( - ) 683.7 655.7 577.4
14 ( 1.9 ) ( - ) 0.00 ( 1.3 ) ( 0.6 ) 443.0 ( - ) 896.2 803.8 695.5
15 ( 1.8 ) ( - ) 0.00 ( 1.0 ) ( 0.9 ) 554.9 ( - ) 1164 1024 896.4

CPLEX finds no feasible solution to GNP for instances with more than 10 nodes. In

fact, it is not possible to solve even the LP relaxations of GNP for instances with more

than 14 nodes within an hour of CPU time. This is because the formulation for GNP is

too huge for larger instances. This further reinforces the importance of using failure-flow

patterns such as directed p-cycles to design survivable networks; we can solve much

larger instances.

In Figure 5.3, we report the ratio of installed capacity for the solutions provided by

GNP, HUP, SDC, and SDPb to the capacity requirements of NDP. Here we see that sur-

vivable networks produced by HUP have about 100% more capacity installed compared

with the NDP, whereas SDPb requires only about 50% increase in the capacity. On the

other hand, GNP requires about 25% more capacity than NDP. Thus, when compared

with GNP, which provisions the lowest possible capacity for survivable networks, we see

that SDPb requires only an additional 20% capacity, whereas HUP provisions 60% excess

capacity over GNP.

We consider only a subset of all possible directed p-cycles in SDPb. We can po-

tentially achieve even lower costs for SDP by generating other directed p-cycles in the

network. This reinforces our results that survivable networks designed using directed
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Figure 5.3: Comparing capacity efficiency of the survivability models
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p-cycles have comparable capacity efficiency to GNP. Interestingly, even though we gen-

erate directed cycle variables as needed, SDC performs worse than SDPb for all but one

instance. In fact, SDC requires 80% more capacity than NDP, and 44% more than GNP.

When we compare the models in terms of ease of solvability, we see that the HUP

model is the easiest to solve; it takes negligible time. However, HUP requires the solu-

tion of NDP as an input, and the solution time of NDP must be included for designing

survivable networks with HUP. SDC takes about as much time as NDP. Thus, we can

incorporate survivability using the SDC model without much loss in computation time.

Surprisingly, we see in Table 5.2 that SDPb is solved more easily than NDP and we were

able to obtain optimal solutions or feasible solutions within 1% of optimal (for the subset

of directed cycle variables used in the formulation) for all instances in Table 5.2.

In Table 5.3 we compare SDP with SDPb to see the effect of generating variables

as needed rather than solving SDPb on a subset of the variables selected a priori. A

comparison of columns (3) indicate that the capacity efficiency of the networks improve by

about 4% on average by pricing the directed p-cycle variables based on their LP reduced
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costs. Furthermore, this improvement gets better with increasing problem size; 16% for

networks with more than twelve nodes. SDP produces networks that have about 15%

more capacity than the ones from GNP, whereas SDPb has 20% excess capacity. The LP

solution times for SDP, which include the time for pricing variables, indicate that columns

can be generated very efficiently. In the last two columns of Table 5.3, we see that only a

small number of the variables are generated.

Table 5.3: The effect of column generation of directed p-cycles

|V |
SDPb SDP

(1) (2) (3) (1) (2) (3) paths added p-cycles added

5 0.00 0.04 110.5 0.01 0.05 93.8 23 8
6 0.00 0.19 230.8 0.01 0.19 222.9 36 6
7 0.01 1.00 160.1 0.01 0.41 162.8 51 4
8 0.01 4.18 236.0 0.01 2.55 221.3 107 14
9 0.02 2.88 257.3 0.02 6.03 262.8 143 14

10 0.04 2.47 372.2 0.02 4.99 358.9 182 10
11 0.10 42.5 384.7 0.06 88.0 384.5 282 26
12 0.05 61.2 570.9 0.17 2337 428.6 499 38
13 0.08 2967 577.4 0.24 ( 1.4 ) 503.4 567 50
14 0.12 ( 0.6 ) 695.5 0.31 ( 0.2 ) 598.4 702 46
15 0.19 ( 0.9 ) 896.4 0.42 ( 0.2 ) 761.3 839 46

(1) LP solution time, (2) time (endgap), (3) best feasible solution.

Finally, in Table 5.4 we report the results of the our experiments with the column

generation approach for large instances of SDP. Table 5.4 demonstrates that relatively

large instances are effectively solved by SDP. These computational experiments suggest

that the method of using directed p-cycles to reroute disrupted flow is quite effective in

designing survivable networks.

Table 5.4: Experiments with large instances

|V | LP solution time (endgap) best feasible solution paths p-cycles

20 3.97 ( 0.7 ) 1641 2171 100
30 27.8 ( 1.4 ) 3567 3549 190
40 123.4 ( 2.8 ) 6245 7262 262
50 186.3 ( 1.1 ) 12212 10643 352
60 2315 ( 0.6 ) 28754 14251 366
70 1333 ( 1.4 ) 24121 23490 390
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5.5 Conclusions

In this chapter, we presented a new method (SDP) for designing capacity-efficient sur-

vivable telecommunication networks. This method differs from the hierarchical edge ca-

pacity covering methods such as HUP (Grover and Stamatelakis 1998), in that we simul-

taneously route no-failure flows and determine slacks for disrupted flow through directed

p-cycles of the network. Therefore, capacity efficiency achieved by SDP is always at least

as high as HUP.

Our computational experiments show that SDPb delivers consistently about 25% more

capacity-efficient networks than HUP does. SDP differs from SDC in the sense that it

uses directed p-cycles as failure-flow patterns. Since these directed p-cycles dominate

directed cycles, capacity efficiency achieved by SDP must be at least as good as SDC.

In fact, SDP outperforms SDC by 20%. Surprisingly, even with a restricted set, SDPb

outperforms SDC significantly (approximately 17%). In fact, SDP compares well with

global rerouting (GNP), which gives theoretically the most capacity-efficient survivable

networks possible (see Figure 5.3).

To solve large instances we developed a column generation approach. We showed

that the pricing problem for the directed p-cycle variables problem is NP-hard, and pre-

sented an efficient heuristic to price them effectively. Judicious selection of directed p-

cycle variables seems to be very important in increasing the capacity efficiency of the

networks. Pricing the variables based on their LP reduced costs, even with a heuristic

method, improved capacity efficiency of the networks over selecting them a priori by about

4%. Our computational experiments suggest that SDP is an effective way for designing

survivable telecommunication networks.

5.6 Future directions with failure-flow patterns

There are several directions for further research. In particular, we need to develop other

efficient ways of pricing the directed p-cycle variables. We plan to study the minimum-

weight directed p-cycle problem in detail, which is interesting in itself.
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Just as in the case of SDC, the arc-set inequalities developed for NDP in Chapter 2

can be extended to the arc-set polyhedra of SDP. The capacity constraint is unchanged

from SDC and SDP, and thus all the results for the arc-set polyhedra of the SDC are valid.

Therefore, residual capacity inequalities (4.3) are the only class of cutting planes for SDP

that can be derived from the arc set; see Section 4.2.

In Chapter 6, we continue the polyhedral study of survivable network design problems.

In particular, we develop metric-type inequalities for NDP, SDC, and SDP. In Section 6.4,

we see that these inequalities bring down the solution times for solving SDP by an order

of magnitude. As a special case of these new inequalities, we obtain the cut-set inequality

for SDP, see Section 6.2.3. Finally, in Chapter 7 we study the mixed-integer knapsack set.

Inequalities developed for this set can be used to develop more valid-inequalities for SDP.

We mentioned in Section 3.4 that Stamatelakis and Grover (2000) study the effect of

using various predetermined failure-flow structures and prove that no other structure is

more efficient for uncapacitated problems. However, this does not imply that a directed p-

cycle is the most capacity-efficient structure for the capacitated survivable network design

problem. There may be other structures which provide lower capacity utilization. Further,

it may be possible to achieve better capacity efficiency by using more than one structure

at the same time. This is a subject of future research; here we present some initial

thoughts on two other failure-flow patterns - paths and trees.

First, we discuss directed paths as failure-flow patterns. Figure 5.4 illustrates the way

in which an individual path may be used for restoration. In (a), an example of a directed

path is shown. In (b), edge [ab] breaks, and the arcs of the path are used for restoring

any disrupted flow on arc (ab). Further inspection shows that this particular directed path

provides a restoration path for five off-path failures. No restoration paths are provided

when edges on the path fail; unlike directed p-cycles.

Second, we discuss directed trees as failure-flow patterns. Figure 5.5 illustrates the

way in which an individual tree may be used for restoration. In (a), an example of a

directed tree is shown. In (b), edge [ab] fails, and the arcs of the tree (from a to b through

node c) are used for restoring any disrupted flow on arc (ab). Further inspection shows
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Figure 5.4: Directed paths as failure-flow patterns
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that this particular directed tree provides a restoration path for seven off-tree failures.

Again, no restoration paths are provided when edges on the tree fail.

Figure 5.5: Directed trees as failure-flow patterns
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Chapter 6

Metric-type inequalities for

survivable network design

In this chapter, we develop metric-type inequalities for survivable network design. We

first review known metric inequalities for the network design problem with no survivabil-

ity (NDC), and then describe new inequalities for the survivable network design using

directed cycles (SDC) and directed p-cycles (SDP), respectively.

We strengthen the metric-type inequalities by integer rounding or mixed-integer

rounding, as the case may be. We also develop more valid inequalities by generating

facets of the integer knapsack set (see Chapter 7) defined by these metric inequalities.

Depending on the set, we refer to these new metric-type inequalities as either pure-metric

inequalities or mixed-metric inequalities.

We show that known cut-set inequalities for NDP and SDC (see Sections 2.2 and 4.2)

are special cases of the strengthened metric-type inequalities. We also derive new cut-

set inequalities for SDP as special cases of the pure-metric and mixed-metric inequalities.

We assume that there exists no pre-installed capacity on the network, for ease of

exposition. All the results in this chapter can be easily modified for the case with pre-

existing capacity w0 on the edges of the graph. We use arc-based formulations to derive

the results in this chapter; path-based formulations yield the same results.

We begin by describing the general procedure used to develop metric-type inequal-
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ities in Section 6.1. In Section 6.2, we derive metric-type inequalities with only pure

integer variables. We extend these inequalities to include continuous variables in Sec-

tion 6.3. For both these cases, we repeat the analysis for NDP, SDC, and SDP. For NDP

and SDC, we show that known cut-set inequalities are special cases of strengthened

metric-type inequalities. Using similar techniques, we develop 2-partition inequalities for

SDP. Finally, in Section 6.4, we present computational results illustrating the effectiveness

of the metric-type inequalities in solving survivable network design problems.

6.1 Overview of procedure to develop metric-type inequalities

We describe the general procedure used in this chapter to derive metric-type inequalities

for NDP, SDC, and SDP. For the definitions of many of the terms used in this overview,

we refer the reader to Section 1.4.

Let |N | = n, and A be an m× n matrix. Consider the linear program

zLP = max{cx : x ∈ SLP },

where SLP = {x ∈ Rn
+, Ax ≤ b}.

We partition the set N into sets N0 and N1, and refer to the corresponding variables

and matrix of columns by x0, x1 and A0, A1 respectively. Let |Ni| = ni, i = 0, 1. Suppose

that we want to derive metric-type inequalities which involve only the variables x1.

Consider the restriction obtained by fixing the variables x1 to x̄1, and denote it by Sx̄1
.

Now, any x0 ∈ Sx̄1
if and only if

Sx̄1
= {x0 ∈ R

n0

+ , A0x0 ≤ b−A1x̄1}.

By Farkas’ Lemma, Sx̄1
6= ∅ if and only if there exist no w ∈ Rm

+ such that wA0 ≥

0, w(b−A1x̄1) < 0. In other words, x̄1 yields a feasible solution to SLP for some x0 if and

only if w(b−A1x̄1) ≥ 0 for all w in the dual cone of Sx̄1
. Therefore, w(b−A1x1) ≥ 0 for all

w in the dual cone of Sx̄1
, and we have proved the following.

Proposition 6.1 Metric-type inequality wA1x1 ≤ wb is valid for SLP for all w in the dual

cone of Sx̄1
.
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This procedure can be repeated for anyH ⊆ N to get valid inequalities in the variables

xH . Naturally, we would like to find non-dominated inequalities. The following result states

how this can be done.

Proposition 6.2 Metric-type inequality w̄A1x1 ≤ w̄b is not dominated by any other metric

inequality if w̄ is an extreme ray of the dual cone of Sx̄1
.

Since the metric-type inequality is derived from feasibility conditions using Farkas’

Lemma, it is always valid for SLP . In the context of mixed-integer programming, a metric-

type inequality obtained using its LP relaxation is valid for the LP relaxation. To convert

this to a valid inequality for the convex hull of the mixed-integer program such that it also

cuts off parts of SLP , it needs to be strengthened. The metric-type inequalities can be

strengthened by mixed-integer rounding. Alternatively, we can compute the facets of the

mixed-integer knapsack set described by the inequality.

This procedure was first used in the context of multi-commodity flow problems to de-

velop metric inequalities (Iri 1971, Onaga and Kakusho 1971). Since then, the technique

has been used for many classes of problems, including network design, see (Avella et al.

2004) for recent work in this direction.

6.2 Inequalities with no continuous variables

6.2.1 Metric inequalities for NDP

Let G = (V,E) be an undirected graph with node set V and edge set E. Let F be the set

of all ordered pairs (arcs) from E, i.e., F = {(ij), (ji) : [ij] ∈ E}. We use (ij) to denote

the arc from node i to node j, and [ij] to denote the edge between nodes i and j. We

use G′ = (V, F ) to denote the directed graph. We use F \ [ij] to represent F \{(ij), (ji)}.

Let K = [1, |K|] be the set of commodities. Let {(sk, tk, dk)}k∈K be the commodity triples

of source and destination nodes sk and tk, and dk be the supply at sk for tk, k ∈ K.

Let bki be the supply of commodity k at node i, i.e., bk
sk = dk, bk

tk
= −dk, and bki = 0 for

i ∈ V \ {sk, tk}.
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We define variable yk
ij as the fraction of commodity k routed through arc (ij) ∈ F . We

define the capacity variable x[ij] as the amount of capacity installed on edge [ij].

Given a capacity vector x̄ ∈ Z|E|, a feasible solution to the NDP exists for this x̄ if and

only if there exist yk
ij ∈ R+, (ij) ∈ F, k ∈ K such that

(wk
i )

∑

(ij)∈F

dkyk
ij −

∑

(ji)∈F

dkyk
ji = bki ∀i ∈ V, ∀k ∈ K (6.1)

(uij)
∑

k∈K

dkyk
ij ≤ x̄[ij] ∀(ij) ∈ F, (6.2)

where w, u are dual variables to constraints (6.1) and (6.2), respectively. By Farkas’

Lemma, this is true if and only if

∑

(ij)∈F

uij x̄[ij] ≥ −
∑

i∈V

∑

k∈K

wk
i b

k
i (6.3)

for all u ∈ R|F |, w ∈ R|V ||K| such that

uij ≥ wk
j − wk

i ∀k ∈ K, ∀(ij) ∈ F (6.4)

uij ∈ R+ ∀(ij) ∈ F. (6.5)

For all k ∈ K, bki = 0 unless i = sk or tk; we can simplify constraint (6.3).

Definition 6.3 For all u,w satisfying constraints (6.4) and (6.5),

∑

(ij)∈F

uijx[ij] ≥
∑

k∈K

dk(wk
tk − wk

sk) (6.6)

is a metric inequality for NDP with only integer variables.

To simplify the following discussion, we use γ to denote the right hand side of the in-

equality (6.6). Given x̄, finding the most violated inequality is the following linear program,

and can be solved in polynomial time.

max
∑

k∈K

dk(wk
tk − wk

sk) −
∑

(ij)∈F

uij x̄[ij]

s.t. : wk
j − wk

i ≤ uij ∀k ∈ K, ∀(ij) ∈ F (6.7)

uij ∈ R+ ∀(ij) ∈ F.

When u is fixed, the problem decomposes for each commodity, and can be solved
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more efficiently since (6.7) are the dual constraints for a shortest path problem on a

directed network (Ahuja et al. 1993). For the most violated inequality (6.6) when u is

given, we wish to maximize γ, and thus w are the shortest path labels when the arc

weights are defined as u. The contribution to γ from commodity k is exactly the weight of

the shortest path from source sk to destination tk.

Since the metric inequalities for NDP are derived from the dual of the LP relaxation of

NDP, they do not violate any fractional points. To obtain strong valid inequalities for NDP,

the metric inequalities need to be strengthened.

An immediate strengthening is obtained by integer rounding (IR). We can scale the

coefficients u arbitrarily; without loss of generality we assume that u ∈ Z. Rounding up

the right hand side, we obtain the rounded metric inequalities (Avella et al. 2004)

∑

(ij)∈F

uijx[ij] ≥ dγe. (6.8)

Next, we show that the cut-set inequality with only integral capacity variables is a

special case of the rounded metric inequalities. For a non-empty partition (A,B) of the

nodes V , let [AB] be the edges with one end in A, the other in B; corresponding to these

edges, let AB be the arcs directed from A to B, and BA be the arcs directed from B to A.

Let KA = {k ∈ K : sk ∈ A, tk /∈ A}, KB = {k ∈ K : sk ∈ B, tk /∈ B}, dA =
∑

k∈KA
dk,

and dB =
∑

k∈KB
dk. Without loss of generality, we assume that dA ≥ dB.

If we fix uij = 1 for all (ij) ∈ AB, and 0 otherwise, then the left hand side of (6.8) is

the same as the left hand side of the cut-set inequality (2.3). Now, for commodity k ∈ K,

we have the cost of its shortest path equal to 1 if k ∈ KA, and 0 otherwise. Thus, γ = dA,

and we have proved the following.

Proposition 6.4 For partition (A,B), the cut-set inequality for NDP

∑

[ij]∈[AB]

x[ij] ≥ ddAe

is obtained by rounding the special case of the metric inequality for NDP (see Defini-

tion 6.3) where uij = 1 if (ij) ∈ AB, and 0 otherwise.
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6.2.2 Metric inequalities for SDC

Let C be the set of directed cycles of G′. We define the variable zc to denote the amount

of slack reserved on directed cycle c. Let αc
ij be 1 if directed cycle c includes arc (ij), and

0 otherwise.

Given a capacity vector x̄ ∈ Z|E|, a feasible solution to SDC exists for this x̄ if and only

if there exist yk
ij ∈ R+, (ij) ∈ F, k ∈ K and zc ∈ R+, c ∈ C such that

(wk
i )

∑

(ij)∈F

dkyk
ij −

∑

(ji)∈F

dkyk
ji = bki ∀i ∈ V, ∀k ∈ K (6.9)

(uij)
∑

k∈K

dkyk
ij ≤ x̄[ij] ∀(ij) ∈ F (6.10)

(vij)
∑

k∈K

dkyk
ij −

∑

c∈C

αc
jizc ≤ 0 ∀(ij) ∈ F, (6.11)

where w, u, v are dual variables to constraints (6.9), (6.10), and (6.11), respectively. By

Farkas’ Lemma, this is true if and only if

∑

(ij)∈F

uij x̄[ij] ≥
∑

k∈K

dk(wk
tk − wk

sk)

for all u ∈ R|F |, v ∈ R|F |, w ∈ R|V ||K| such that

uij + vij ≥ wk
j − wk

i ∀k ∈ K, ∀(ij) ∈ F (6.12)
∑

(ij)∈F

αc
ij(uij − vji) ≥ 0 ∀c ∈ C (6.13)

uij , vij ∈ R+ ∀(ij) ∈ F. (6.14)

Definition 6.5 For all u, v, w that satisfy constraints (6.12)- (6.14),

∑

(ij)∈F

uijx[ij] ≥
∑

k∈K

dk(wk
tk − wk

sk) (6.15)

is a metric inequality for SDC with only integer variables.

Again, we use γ to denote the right hand side of the inequality (6.15). Finding the

most violated inequality is the following LP; however we have an exponential number of
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directed cycle constraints (6.17).

max
∑

k∈K

dk(wk
tk − wk

sk) −
∑

(ij)∈F

uij x̄[ij]

s.t. : wk
j − wk

i ≤ uij + vij ∀k ∈ K, ∀(ij) ∈ F (6.16)
∑

(ij)∈F

αc
ij(uij − vji) ≥ 0 ∀c ∈ C (6.17)

uij , vij ∈ R+ ∀(ij) ∈ F.

The separation problem for inequalities (6.17) is exactly the same as the pricing of

directed cycle variables in SDC, and can be done in polynomial time. Thus, this LP is

polynomially solvable by the ellipsoid algorithm.

When u, v are fixed such that inequalities (6.17) are satisfied for all directed cycles

in the network, the problem decomposes for each commodity. As in Section 6.2.1, the

problem of finding the maximum γ can be solved more efficiently since (6.16) are the

dual constraints for a shortest path problem on a directed network (Ahuja et al. 1993).

Thus, w are the shortest path labels when the weight on arc (ij) is uij + vij , and the

contribution to γ from commodity k is exactly the weight of the shortest path from source

sk to destination tk.

Since the metric inequalities for SDC (6.15) are derived from the dual of the LP relax-

ation of SDC, they do not violate any fractional points. As in Section 6.2.1, they need to

be strengthened to obtain strong valid inequalities for SDC.

An immediate strengthening is obtained by integer rounding. By scaling, we assume

without loss of generality that u ∈ Z and then round up the right hand side to obtain

∑

(ij)∈F

uijx[ij] ≥ dγe. (6.18)

We call this class of inequalities the rounded metric-type inequalities for SDC.

Let G′
A = (A,FA), G′

B = (B,FB) be the sub-graphs defined by the partition (A,B),

and let C̄ be the set of directed cycles that cross the partition.
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Proposition 6.6 For partition (A,B), the cut-set inequality for SDC (4.9)

x([AB]) ≥ d2dAe

is obtained by rounding the special case of the metric inequality for SDC (see Defini-

tion 6.5) where uij = 1 if (ij) ∈ AB, and 0 otherwise.

When uij = 1 if (ij) ∈ AB, and 0 otherwise, the left hand side of (6.18) corresponds

to the cut-set inequality (4.9). The right hand side is equal to dγe, where γ is the solution

to the following optimization problem:

max
∑

k∈K

dk(wk
tk − wk

sk)

s.t. : wk
j − wk

i ≤ 1 + vij ∀k ∈ K, ∀(ij) ∈ AB (6.19)

wk
j − wk

i ≤ vij ∀k ∈ K, ∀(ij) ∈ F \AB

−
∑

(ij)∈F\AB

αc
ijvji +

∑

(ij)∈AB

αc
ij(1 − vji) ≥ 0 ∀c ∈ C (6.20)

vij ∈ R+ ∀(ij) ∈ F.

Consider the following solution to this optimization problem. Fix vij = 1 if (ij) ∈ AB,

and 0 otherwise. Now the left hand side of constraints (6.20) reduces to −
∑

(ij)∈BA α
c
ij +

∑

(ij)∈AB α
c
ij . All directed cycles c /∈ C̄ satisfy constraints (6.20) for this allocation of u

and v trivially. All directed cycles c ∈ C̄ use some arc in AB exactly as many times as

they use some arc in BA; thus u, v as chosen satisfy (6.20) for such cycles.

The problem reduces to shortest path problems for each commodity where the weight

of arcs in AB is 2, and is 0 otherwise. For commodity k ∈ K, we have the cost of its

shortest path equal to 2 if k ∈ KA, and 0 otherwise. Thus, γ ≥ 2dA, and we have exactly

the right hand side of the cut-set inequality (4.9). The following proposition proves that

this solution is optimal under mild conditions.

Proposition 6.7 If the sub-graphs G′
A and G′

B are 2-connected, then the solution vij = 1

if (ij) ∈ AB, and 0 otherwise, is optimal when uij = 1 if (ij) ∈ AB, and 0 otherwise.

Proof See Appendix E.
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6.2.3 Metric inequalities for SDP

Finally, we develop metric inequalities for SDP. Let ρc
[ij] be 1 if edge [ij] is a chord to

directed p-cycle c, and 0 otherwise. Given a capacity vector x̄ ∈ Z|E|, a feasible solution to

SDP exists for this x̄ if and only if there exist yk
ij ∈ R+, (ij) ∈ F, k ∈ K and zc ∈ R+, c ∈ C

such that

(wk
i )

∑

(ij)∈F

dkyk
ij −

∑

(ji)∈F

dkyk
ji = bki ∀i ∈ V, ∀k ∈ K (6.21)

(uij)
∑

k∈K

dkyk
ij ≤ x̄[ij] ∀(ij) ∈ F (6.22)

(vij)
∑

k∈K

dkyk
ij −

∑

c∈C

αc
jizc −

∑

c∈C

ρc
[ij]zc ≤ 0 ∀(ij) ∈ F, (6.23)

where w, u, v are dual variables to constraints (6.21), (6.22), and (6.23), respectively. By

Farkas’ Lemma, this is true if and only if

∑

(ij)∈F

uij x̄[ij] ≥
∑

k∈K

dk(wk
tk − wk

sk)

for all u ∈ R|F |, v ∈ R|F |, w ∈ R|V ||K| such that

uij + vij ≥ wk
j − wk

i ∀k ∈ K, ∀(ij) ∈ F (6.24)
∑

(ij)∈F

αc
ij(uij − vji) −

∑

(ij)∈F

ρc
[ij]vij ≥ 0 ∀c ∈ C (6.25)

uij , vij ∈ R+ ∀(ij) ∈ F. (6.26)

Definition 6.8 For all u, v, w that satisfy constraints (6.24)-(6.26),

∑

(ij)∈F

uijx[ij] ≥
∑

k∈K

dk(wk
tk − wk

sk) (6.27)

is a metric inequality for SDP with only integer variables.

As in Sections 6.2.1 and 6.2.2, we use γ to denote the right hand side of the metric-

type inequality for SDP (6.27). Finding the most violated metric inequality is the following
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LP; we have an exponential number of directed p-cycle constraints (6.29).

max
∑

k∈K

dk(wk
tk − wk

sk) −
∑

(ij)∈F

uij x̄[ij]

s.t. : wk
j − wk

i ≤ uij + vij ∀k ∈ K, ∀(ij) ∈ F (6.28)
∑

(ij)∈F

αc
ij(uij − vji) −

∑

(ij)∈F

ρc
[ij]vij ≥ 0 ∀c ∈ C (6.29)

uij , vij ∈ R+ ∀(ij) ∈ F.

The separation problem for constraints (6.29) is exactly the same as the pricing of di-

rected p-cycle variables in SDP, which was shown to be NP-hard (Theorem 5.2). Thus,

finding the most violated metric-type inequality for SDP is NP-hard.

When u, v are fixed such that constraints (6.29) are satisfied for all directed p-cycles

in the network, the problem decomposes for each commodity. As before, when u, v are

fixed, constraints (6.28) are the dual constraints for a shortest path problem on a directed

network (Ahuja et al. 1993), and can be solved efficiently. Thus, w are the shortest path

labels when the weight on arc (ij) is uij + vij , and the contribution to γ from commodity

k is exactly the weight of the shortest path from source sk to destination tk.

Since the metric inequalities (6.27) are derived from the dual of the LP relaxation of

SDP, they do not violate any fractional points. As in Sections 6.2.1 and 6.2.2, the metric

inequalities need to be strengthened to obtain strong valid inequalities for SDP.

An immediate strengthening is obtained by integer rounding. Without loss of general-

ity, we assume that the coefficients u are scaled such that u ∈ Z. Rounding up the right

hand side, we obtain

∑

(ij)∈F

uijx[ij] ≥ dγe. (6.30)

We call this class of inequalities the rounded metric-type inequalities for SDP. We next

present two classes of partition inequalities for SDP that are special cases of the rounded

metric-type inequalities.
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6.2.3.1 Cardinality-k cut-set inequality

As for NDP and SDC, the cardinality-k cut-set inequality for SDP corresponding to the

partition (A,B) is a special case of the rounded metric-type inequalities. We obtain the

cardinality-k cut-set inequality as follows. Let uij = 1 if (ij) ∈ AB, and 0 otherwise.

Then, the left hand side of (6.18) corresponds to the cardinality-k cut-set inequality, see

Sections 6.2.2 and 6.2.1 for the cut-set inequality for NDP and SDC, respectively. The

right hand side is equal to γ, which is the solution to the following optimization problem:

max
∑

k∈K

dk(wk
tk − wk

sk)

s.t. : wk
j − wk

i − 1 ≤ vij ∀k ∈ K, ∀(ij) ∈ AB

wk
j − wk

i ≤ vij ∀k ∈ K, ∀(ij) ∈ F \AB

−
∑

(ij)∈F\AB

αc
ijvji +

∑

(ij)∈AB

αc
ij(1 − vji) −

∑

(ij)∈F

ρc
[ij]vij ≥ 0 ∀c ∈ C (6.31)

vij ∈ R+ ∀(ij) ∈ F.

Consider the following solution. We fix vij = ν ≥ 0, for all (ij) ∈ AB and 0, otherwise.

Since u, v have been fixed, the problem reduces to shortest path problems for each com-

modity where the weight of arcs in AB is 1 + ν, and is 0 otherwise. For commodity k, the

cost of its shortest path is equal to 1 + ν if k ∈ KA, and 0 otherwise. Thus, γ ≥ dA(1 + ν).

To ensure feasibility of constraints (6.31), we need

−
∑

(ij)∈BA

αc
ijν +

∑

(ij)∈AB

αc
ij −

∑

(ij)∈AB

ρc
[ij]ν ≥ 0 ∀c ∈ C.

For directed p-cycle c, let `c be the number of times it uses an arc in AB, and let ωc

be the number of chords among the edges in [AB]. Then, constraint (6.31) is satisfied if

ν(`c + ωc) ≤ `c for all directed p-cycles c ∈ C. This is satisfied for any ν by all directed

p-cycles c that do not cross the partition (A,B). Let C̄ be the set of directed p-cycles

that cross the partition. To find the most violated inequality (6.30), we set ν as high

as possible. Defining µAB = minc∈C̄{`c/(`c + ωc)}, we set ν = µAB. Proposition 6.9

states this allocation is optimal under mild conditions. For partition (A,B), we obtain the
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cardinality-k cut-set inequality for SDP as

x([AB]) ≥ ddA(1 + µAB)e. (6.32)

Proposition 6.9 If the sub-graphs G′
A and G′

B are 2-connected, then the solution vij =

µAB if (ij) ∈ AB, and 0 otherwise, is optimal when u is fixed so that the left hand side

corresponds to the cardinality-k cut-set inequality (6.32), i.e., when uij = 1 if (ij) ∈ AB,

and 0 otherwise.

Proof See Appendix E.

To obtain µAB, we need to solve an optimization problem over an exponential set

of directed p-cycles. We define ωAB as the maximum ratio of (chords)/(arcs) that any

directed p-cycles may have among the edges [AB], i.e., ωAB = maxc∈C̄ ωc/`c. Thus,

µAB = 1/(1+ωAB). Given graph G = (V,E) and partition (A,B), we refer to the problem

of finding ωAB as the maximum chord problem (MCP).

Theorem 6.10 The maximum chord problem (MCP) is NP-hard.

Proof See Appendix E.

Since solving for ωAB is NP-hard, we wish to find an upper bound to ωAB. For

directed p-cycle c ∈ C̄, ωc ≤ |AB| − 2. Since `c ≥ 1, we get ωc/`c ≤ |AB| − 2, Thus,

we have µAB ≥ 1/(|AB| − 1). To maximize the right hand side of (6.32), we set ν =

1/(|AB| − 1), and we have proved the following.

Proposition 6.11 For partition (A,B), the cardinality-k cut-set inequality for SDP

x([AB]) ≥ ddA
|AB|

|AB| − 1
e. (6.33)

is obtained by rounding the special case of the metric-type inequality for SDP (see Defi-

nition 6.8) where uij = 1 if (ij) ∈ AB, and 0 otherwise.

Inequality (6.33) can be strengthened to

x([AB]) ≥ dddAe
|AB|

|AB| − 1
e. (6.34)

This is obtained by integer rounding from another special case of the rounded metric-type
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inequalities for SDP. We call this class of inequalities the strengthened cut-set inequality,

and derive them in Section 6.2.3.2.

6.2.3.2 Strengthened cut-set inequality

We call these inequalities the strengthened cut-set inequalities since the left hand side

contains the capacity variables for all but one edge in the cut set.

Proposition 6.12 For partition (A,B), let [ab] ∈ [AB]. The strengthened cut-set inequal-

ity for SDP

x([AB] \ {[ab]}) ≥ ddAe, (6.35)

is obtained by rounding the special case of the metric-type inequality for SDP (see Defi-

nition 6.8) where uij = 1 if (ij) ∈ AB \ {[ab]}, and 0 otherwise.

When uij = 1 if (ij) ∈ AB \ {[ab]}, and 0 otherwise, the left hand side of (6.30)

corresponds to the strengthened cut-set inequality (6.35).

The right hand side is equal to dγe, where γ is the optimal solution to the following

maximization problem:

γ = max
∑

k∈K

dk(wk
tk − wk

sk)

s.t. : wk
j − wk

i − 1 ≤ vij ∀k ∈ K, ∀(ij) ∈ AB \ {(ab)}

wk
j − wk

i ≤ vij ∀k ∈ K, ∀(ij) /∈ AB \ {(ab)}

−
∑

(ij)/∈AB\{(ab)}

αc
ijvji +

∑

(ij)∈AB\{(ab)}

αc
ij(1 − vji) −

∑

(ij)∈F

ρc
[ij]vij ≥ 0 ∀c ∈ C (6.36)

vij ∈ R+ ∀(ij) ∈ F.

In order to find a lower bound on γ, we fix vab = 1 and vij = 0 for all (ij) ∈ F \ {(ab)}.

Then, the problem reduces to shortest path problems for each commodity where the

weight of arcs in AB is 1, and is 0 otherwise. For commodities k in KA, we have the cost

of its shortest path equal to 1, and 0 otherwise. Thus, γ ≥ dA, and we obtain (6.35).

For this allocation of v to be feasible, constraints (6.36) need to be satisfied. For

directed p-cycle c, the left hand side reduces to −αc
ba +

∑

(ij)∈AB\{(ab)} α
c
ij − ρ[ab]. Now,
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the second term in this expression is equal to 0 if and only if the directed p-cycle only

uses arc (ab) among all arcs in AB. In this case, both αba and ρ[ab] are zero, and (6.36)

is satisfied. If directed p-cycle does not use arc (ab), but uses more than one arc in AB,

then (6.36) is satisfied trivially. In the only remaining case, directed p-cycle uses only one

arc in AB, say (ij). This implies that the directed p-cycle c crosses the partition (A,B)

exactly once. If, to cross over from B to A, the directed p-cycle either uses arc (ba),

then αc
ba = 1, ρ[ab] = 0; otherwise αc

ba = 0, ρ[ab] ≤ 1. In either case, (6.36) is satisfied.

Furthermore, it can be shown that this allocation of v maximizes γ so long as the sub-

graphs G′
A and G′

B are connected.

By summing up (6.35) for all [ab] ∈ [AB], dividing the resultant inequality by |AB| − 1,

and applying integer rounding, we obtain the cardinality-k cut-set inequality (6.34).

Interestingly, (6.35) and (6.34) are the same as the strengthened cut-set inequality

and the cardinality-k cut-set inequality, respectively, derived for global rerouting shared

protection (GNP) in Balakrishnan et al. (2002). This provides some insight as to why SDP

yields survivable networks with capacity efficiency comparable with GNP.

We remark the validity of cut-set inequalities for NDP and SDC that are special cases

of the rounded metric inequalities (6.8) and (6.18) was shown in earlier works without

using the arguments in this chapter. It is similarly possible to prove the validity of the

strengthened cut-set inequalities (6.35) and the cardinality-k cut-set inequalities (6.34)

using other arguments. However, we believe that the framework introduced in this chapter

allows us to develop many other classes of inequalities as well; even those that are not

easily derived otherwise.

6.2.4 Pure-metric inequalities

For the derivations in Section 6.2, we assumed that all the capacity variables x ∈ E were

given (x̄). If only a strict subset of x[ij] were fixed, then the dual variables corresponding

to the capacity constraints uij , uji will be forced to zero in all feasible solutions to the

dual problem obtained using Farkas’ Lemma. This is true even if some of the continuous

variables are treated as given, as in Section 6.3. Therefore, without loss of generality, we
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assume that all x are fixed throughout this chapter.

We can develop new metric-type inequalities from the metric inequalities (6.6), (6.15),

and (6.27) by generating strong valid inequalities for the pure-integer knapsack set de-

scribed by the metric inequality. In Section 7.5.1, we describe how this can be done, and

call these new inequalities pure-metric inequalities. The rounded metric-type inequal-

ities are one of the many classes of pure-metric inequalities that can be obtained by

this procedure. Obtaining the most violated pure-metric inequality is NP-hard, since the

separation problem for even the cut-set inequalities is known to be NP-hard (Bienstock

2001). As a heuristic, we can find the most violated metric inequality, and then scale the

u variables to obtain a pure-integer knapsack set. Unfortunately, even this procedure is

NP-hard for SDP (6.27), since the separation problem for the exponential class of con-

straints in the optimization problem to find the most violated metric inequality is NP-hard;

see Section 6.2.3.

No closed-form characterization exists for the convex hull of the pure-integer knap-

sack set, except for special cases such as divisible coefficients uij , (ij) ∈ F (Pochet

and Wolsey 1995). To guarantee that we obtain facets of the pure-integer knapsack set,

we can solve the optimization problem for γ as a mixed-integer program where the vari-

ables u are constrained to be divisible. However, this optimization problem involves the

pricing of an exponential class of cycle variables for SDC and SDP, and is handled by a

branch-and-price algorithm. Furthermore, for SDP, the pricing problem of directed p-cycle

variables is NP-hard.

6.3 Inequalities with continuous variables

In Section 6.3, we develop metric-type inequalities that have nonzero coefficients for

the continuous variables. We derive these inequalities using the procedure described in

Section 6.1, and show that they can be strengthened by mixed-integer rounding. Fur-

thermore, we can derive new inequalities by generating facets of the mixed-integer set

defined by the inequalities to obtained mixed-metric inequalities. We also show that pre-
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viously known flow cut-set inequalities for NDP are special cases of the strengthened

inequalities; obtained by applying mixed-integer rounding (MIR) to special cases of the

metric-type inequalities.

6.3.1 Metric inequalities for NDP

Assume that we are given a capacity vector x̄ ∈ Z|E| and a flow vector ȳ ∈ R|F|. Let

F k ⊆ F be the set of arcs for which the flow is given, for commodity k; and let Kij ⊆ K

be the set of commodities for which flow is given, for arc (ij). For (ȳ, x̄), a feasible solution

to the NDP exists if and only if there exist y ∈ R
|(F×K)\F|
+ such that

(wk
i )

∑

(ij)∈(F\F k)

dkyk
ij −

∑

(ji)∈(F\F k)

dkyk
ji

= bki −
∑

(ij)∈F k

dkȳk
ij +

∑

(ji)∈F k

dkȳk
ji ∀i ∈ V, ∀k ∈ K

(6.37)

(uij)
∑

k∈(K\Kij)

dkyk
ij ≤ x̄[ij] −

∑

k∈Kij

dkȳk
ij ∀(ij) ∈ F, (6.38)

where w, u are dual variables to constraints (6.37) and (6.38), respectively. Thus by

Farkas’ Lemma, (ȳ, x̄) yields a feasible solution to the NDP if and only if

∑

(ij)∈F

uij(x̄[ij] −
∑

k∈Kij

dkȳk
ij) ≥ −

∑

i∈V

∑

k∈K

wk
i (bki −

∑

(ij)∈F k

dkȳk
ij +

∑

(ji)∈F k

dkȳk
ji)

for all u ∈ R|F |, w ∈ R|V ||K| such that

wk
j − wk

i ≤ uij ∀k ∈ K \Kij , ∀(ij) ∈ F (6.39)

uij ∈ R+ ∀(ij) ∈ F. (6.40)

Definition 6.13 For all u,w that satisfy constraints (6.39) and (6.40),

∑

(ij)∈F

uij(x[ij] −
∑

k∈Kij

dkyk
ij) −

∑

i∈V

∑

k∈K

wk
i (

∑

(ij)∈F k

dkyk
ij−

∑

(ji)∈F k

dkyk
ji)

≥
∑

k∈K

dk(wk
tk − wk

sk)

(6.41)

is a metric inequality for NDP with integer and continuous variables.
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Finding the most violated metric inequality (6.41) is equivalent to

max
∑

k∈K

dk(wk
tk−w

k
sk)−

∑

(ij)∈F

uij(x̄[ij]−
∑

k∈Kij

dkȳk
ij)+

∑

i∈V

∑

k∈K

wk
i (

∑

(ij)∈F k

dkȳk
ij−

∑

(ji)∈F k

dkȳk
ji)

subject to the constraints (6.39) and (6.40). This is a linear program, and can be solved

in polynomial time.

When u is fixed, the problem decomposes for each commodity, and can be solved

more efficiently since (6.39) are the dual constraints for a minimum cost network flow

problem on a directed network (Ahuja et al. 1993).

Since constraints (6.41) do not violate any LP relaxation solution, these need to be

strengthened using mixed-integer rounding (MIR). We refer to these inequalities as m-

rounded metric inequalities.

The m-rounded metric inequalities are one of the many classes of the mixed-metric

inequalities, which are derived as valid inequalities for the mixed-integer set described

by the metric inequality, see Section 6.3.4. However, the m-rounded metric inequalities

deserve special attention since the flow cut-set inequality for NDP is a special case;

shown as follows.

For a non-empty partition (A,B), let H ⊆ AB. Define K ′ as the set of commodities

that have both source and destination nodes sk and tk in the same sub-graph (either G′
A

or G′
B). Let KB = K \ (K ′ ∪ KA). To obtain the same variables as in (2.4), we fix flow

variables y such that F k = AB \H for all k ∈ K. Thus, Kij = K if (ij) ∈ AB \H, and ∅

otherwise. Fixing uij = 1 if (ij) ∈ H, and 0 otherwise, the first term in the left hand sides

of (6.41) and the flow cut-set inequality (2.4) are the same.

Since we fix u, the problem decomposes by commodity. For commodity k, the problem

thus reduces to maximizing

dk(wk
tk − wk

sk) +
∑

i∈V

wk
i (

∑

(ij)∈AB\H

dkȳk
ij −

∑

(ji)∈AB\H

dkȳk
ji).

Rearranging the second term in the objective, we want to maximize

(wk
tk − wk

sk) −
∑

(ij)∈AB\H

ȳk
ij(w

k
i − wk

j ). (6.42)
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To satisfy (6.39), we are now forced to set wk
j = wk

i if (ij) /∈ H; and wk
j − wk

i ≤ 1, other-

wise. Since we are only interested in the difference wk
tk
− wk

sk , without loss of generality,

we can set wk
sk = w, ∀k ∈ K. For the rest of this derivation of the optimal solution to

(6.42), we assume that the sub-graphs G′
A and G′

B are connected.

Since 0 ≤
∑

(ij)∈AB\H ȳk
ij ≤ 1, ∀k ∈ K, and wk

tk
− wk

sk = 0, ∀k /∈ KA, the optimal

solution to (6.42) is easily obtained. For k ∈ K such that sk ∈ B, wk
i = w for all i ∈ V , and

the objective reduces to 0. For k ∈ KA, (6.42) is maximized by setting wk
i = w + 1 i ∈ B,

and w otherwise. Then the objective reduces to 1−
∑

(ij)∈AB\H ȳk
ij . For k ∈ K ′ such that

sk ∈ A, the first term in (6.42) reduces to zero. Since the second term is non-positive, we

maximize it by setting wk
i = w, ∀i ∈ V .

Thus, the most violated metric inequality with the restriction that uij = 1, (ij) ∈ H,

and 0 otherwise, is obtained by setting wk
i = w + 1 if i ∈ B, k ∈ KA, and w otherwise;

resulting in the metric inequality

∑

(ij)∈H

x[ij] +
∑

k∈KA

dk
∑

(ij)∈AB\H

yk
ij ≥ ddAe.

By applying MIR, we obtain the flow cut-set inequality (2.4).

Proposition 6.14 For partition (A,B), let H ∈ AB. The flow cut-set inequality for NDP

r(dA)
∑

(ij)∈H

x[ij] +
∑

k∈KA

dk
∑

(ij)∈AB\H

yk
ij ≥ r(dA)ddAe,

is obtained by applying MIR to the special case of the metric inequality for NDP (see

Definition 6.13) where uij = 1, (ij) ∈ H, and 0 otherwise.

Interestingly, we assumed in this derivation that all commodities were fixed for arcs

(ij) ∈ AB. We would have arrived at the same conclusion by fixing only the commodities

in KA; our derivation proved that the other commodities will not contribute to the flow

cut-set inequality even if they were not restricted from doing so.

6.3.2 Metric inequalities for SDC

Assume that we are given a capacity vector x̄ ∈ Z|E|, a flow vector ȳ ∈ R|F|, and a vector

of directed cycle variables z̄ ∈ R|Ĉ|. Let F k ⊆ F be the set of arcs for which the flow

134



www.manaraa.com

is given, for commodity k; and let Kij ⊆ K be the set of commodities for which flow is

given, for arc (ij). For (z̄, ȳ, x̄), a feasible solution to the SDC exists if and only if there

exist y ∈ R
|(F×K)\F|
+ and z ∈ R

|C\Ĉ|
+ such that

(wk
i )

∑

(ij)∈(F\F k)

dkyk
ij −

∑

(ji)∈(F\F k)

dkyk
ji

= bki −
∑

(ij)∈F k

dkȳk
ij +

∑

(ji)∈F k

dkȳk
ji ∀i ∈ V, ∀k ∈ K

(6.43)

(uij)
∑

k∈(K\Kij)

dkyk
ij +

∑

c∈C\Ĉ

αc
ijzc ≤ x̄[ij] −

∑

k∈Kij

dkȳk
ij −

∑

c∈Ĉ

αc
ij z̄c ∀(ij) ∈ F (6.44)

(vij)
∑

k∈K

dkyk
ij −

∑

c∈C

αc
jizc ≤

∑

c∈Ĉ

αc
jiz̄c −

∑

k∈Kij

dkȳk
ij ∀(ij) ∈ F, (6.45)

where w, u, v are dual variables to constraints (6.43), (6.44), and (6.45), respectively.

Thus by Farkas’ Lemma, (ȳ, z̄, x̄) yields a feasible solution to SDC if and only if

∑

(ij)∈F

uij(x̄[ij] −
∑

k∈Kij

dkȳk
ij −

∑

c∈Ĉ

αc
ij z̄c) +

∑

(ij)∈F

vij(
∑

c∈Ĉ

αc
jiz̄c −

∑

k∈Kij

dkȳk
ij)

≥ −
∑

i∈V

∑

k∈K

wk
i (bki −

∑

(ij)∈F k

dkȳk
ij +

∑

(ji)∈F k

dkȳk
ji)

for all u ∈ R|F |, v ∈ R|F |, w ∈ R|V ||K| such that

wk
j − wk

i ≤ uij + vij ∀k ∈ K \Kij , ∀(ij) ∈ F (6.46)
∑

(ij)∈F

αc
ij(uij − vji) ≥ 0 ∀c ∈ C (6.47)

uij , vij ∈ R+ ∀(ij) ∈ F. (6.48)

Definition 6.15 For all u, v, w that satisfy constraints (6.46)-(6.48),

∑

(ij)∈F

uij(x[ij] −
∑

k∈Kij

dkyk
ij −

∑

c∈Ĉ

αc
ijzc) +

∑

(ij)∈F

vij(
∑

c∈Ĉ

αc
jizc −

∑

k∈Kij

dkyk
ij)

−
∑

i∈V

∑

k∈K

wk
i (

∑

(ij)∈F k

dkyk
ij −

∑

(ji)∈F k

dkyk
ji) ≥

∑

k∈K

dk(wk
tk−w

k
sk)

(6.49)

is a metric inequality for SDC with integer and continuous variables.
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Finding the most violated metric inequality (6.49) is equivalent to

max
∑

k∈K

dk(wk
tk − wk

sk) −
∑

(ij)∈F

uij(x̄[ij] +
∑

k∈Kij

dkȳk
ij +

∑

c∈Ĉ

αc
ij z̄c)

−
∑

(ij)∈F

vij(
∑

c∈Ĉ

αc
jiz̄c −

∑

k∈Kij

dkyk
ij) +

∑

i∈V

∑

k∈K

wk
i (

∑

(ij)∈F k

dkyk
ij −

∑

(ji)∈F k

dkyk
ji)

subject to the constraints (6.46)-(6.48). This is a linear program, and can be solved in

polynomial time, since the separation problem for inequalities (6.47) is the same as the

pricing problem for directed cycle variables in SDC.

When u, v are fixed such that inequalities (6.47) are satisfied for all directed cycles

in the network, the problem decomposes for each commodity, and can be solved more

efficiently since (6.46) reduce to the dual constraints for a shortest path problem on a

directed network (Ahuja et al. 1993). Thus, w are the shortest path labels when the

weight on arc (ij) is uij + vij , and the contribution to the right hand side of (6.49) from

commodity k is exactly the weight of the shortest path from source sk to destination tk.

Since inequalities (6.49) do not violate any LP relaxation solution, they need to be

strengthened using mixed-integer rounding (MIR). We refer to these inequalities as m-

rounded metric inequalities.

6.3.3 Metric inequalities for SDP

Assume that we are given a capacity vector x̄ ∈ Z|E|, a flow vector ȳ ∈ R|F|, and a vector

of directed p-cycle variables z̄ ∈ R|Ĉ|. Let F k ⊆ F be the set of arcs for which the flow

is given, for commodity k; and let Kij ⊆ K be the set of commodities for which flow is

given, for arc (ij). For (z̄, ȳ, x̄), a feasible solution to SDP exists if and only if there exist
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y ∈ R
|(F×K)\F|
+ and z ∈ R

|C\Ĉ|
+ such that

(wk
i )

∑

(ij)∈(F\F k)

dkyk
ij −

∑

(ji)∈(F\F k)

dkyk
ji

= bki −
∑

(ij)∈F k

dkȳk
ij +

∑

(ji)∈F k

dkȳk
ji ∀i ∈ V, ∀k ∈ K

(6.50)

(uij)
∑

k∈(K\Kij)

dkyk
ij +

∑

c∈C\Ĉ

αc
ijzc ≤ x̄[ij] −

∑

k∈Kij

dkȳk
ij −

∑

c∈Ĉ

αc
ij z̄c ∀(ij) ∈ F (6.51)

(vij)
∑

k∈K

dkyk
ij −

∑

c∈C

αc
jizc −

∑

c∈C\Ĉ

ρc
[ij]zc

≤
∑

c∈Ĉ

αc
jiz̄c +

∑

c∈Ĉ

ρc
[ij]z̄c −

∑

k∈Kij

dkȳk
ij ∀(ij) ∈ F,

(6.52)

where w, u, v are dual variables to constraints (6.50), (6.51), and (6.52), respectively.

Thus by Farkas’ Lemma, (ȳ, z̄, x̄) yields a feasible solution to SDP if and only if

∑

(ij)∈F

uij(x̄[ij] −
∑

k∈Kij

dkȳk
ij −

∑

c∈Ĉ

αc
ij z̄c) +

∑

(ij)∈F

vij(
∑

c∈Ĉ

αc
jiz̄c +

∑

c∈Ĉ

ρc
[ij]z̄c −

∑

k∈Kij

dkȳk
ij)

≥ −
∑

i∈V

∑

k∈K

wk
i (bki −

∑

(ij)∈F k

dkȳk
ij +

∑

(ji)∈F k

dkȳk
ji)

for all u ∈ R|F |, v ∈ R|F |, w ∈ R|V ||K| such that

wk
j − wk

i ≤ uij + vij ∀k ∈ K \Kij , ∀(ij) ∈ F (6.53)
∑

(ij)∈F

αc
ij(uij − vji) −

∑

(ij)∈F

ρc
[ij]vij ≥ 0 ∀c ∈ C (6.54)

uij , vij ∈ R+ ∀(ij) ∈ F. (6.55)

Definition 6.16 For all u, v, w that satisfy constraints (6.53)-(6.55),

∑

(ij)∈F

uij(x[ij] −
∑

k∈Kij

dkyk
ij −

∑

c∈Ĉ

αc
ij z̄c)

+
∑

(ij)∈F

vij(
∑

c∈Ĉ

αc
jizc +

∑

c∈Ĉ

ρc
[ij]z̄c −

∑

k∈Kij

dkyk
ij)

−
∑

i∈V

∑

k∈K

wk
i (

∑

(ij)∈F k

dkyk
ij −

∑

(ji)∈F k

dkyk
ji) ≥

∑

k∈K

dk(wk
tk − wk

sk)

(6.56)

is a metric inequality for SDP with integer and continuous variables.
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Finding the most violated metric inequality (6.56) is equivalent to

max
∑

k∈K

dk(wk
tk−w

k
sk)−

∑

(ij)∈F

uij(x̄[ij]−
∑

k∈Kij

dkȳk
ij)+

∑

i∈V

∑

k∈K

wk
i (

∑

(ij)∈F k

dkȳk
ij−

∑

(ji)∈F k

dkȳk
ji)

subject to the constraints (6.53)-(6.55). This is a linear program. However, constraints

(6.54) are exponential in number, and their separation is exactly the same as the pricing

problem for directed p-cycle variables in SDP, which is NP-hard (Theorem 5.2). Thus,

finding the most violated inequality is NP-hard.

When u, v are fixed such that constraints (6.54) are satisfied, the problem decom-

poses for each commodity, and can be solved more efficiently since (6.39) are the dual

constraints for a shortest path problem on a directed network (Ahuja et al. 1993). Then,

w are the shortest path labels when the weight on arc (ij) is uij +vij , and the contribution

to the right hand side of (6.56) from commodity k is exactly the weight of the shortest path

from source sk to destination tk.

Since (6.49) do not violate any LP relaxation solution, these need to be strengthened

using mixed-integer rounding (MIR). We refer to these strengthened inequalities as m-

rounded metric inequalities.

6.3.4 Mixed-metric inequalities

We can develop new metric-type inequalities from metric inequalities (6.41), (6.49), and

(6.56) by generating valid inequalities for the mixed-integer knapsack set described by

the metric inequality. In Section 7.5.2, we describe how this can be done, and call these

new inequalities mixed-metric inequalities. The m-rounded metric inequalities are one

of the many classes of mixed-metric inequalities that can be obtained by this procedure.

Obtaining the most violated mixed-metric inequality is NP-hard, since the separation

problem for even cut-set inequalities of NDP is known to be NP-hard (Bienstock 2001).
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6.4 Computational results

In this section, we present computational results that illustrate the effectiveness of the

metric-type inequalities in reducing the computational effort in solving various network

design problems. It is known that the cut-set inequalities improve solution times of NDP

and SDC by more than an order of magnitude, see (Atamtürk 2002) and Section 4.3.

These works also indicate that the most computationally effective inequalities are the

cut-set or partition inequalities involving only the integer capacity variables. Therefore,

we focus on SDP for our experiments, and study the effect of adding the strengthened

cut-set inequalities (6.35) and the cardinality-k cut-set inequalities (6.34) in a branch-and-

cut framework.

We use the same networks as in Sections 4.3 and 5.4; i.e., with 50% demand density

and 75% link density, chosen at random. The branch-and-cut algorithm is implemented

using CPLEX Version 8.1 Callable Library on an Intel Pentium4 2GHz Linux workstation

with 1GB RAM. Each instance was run for one hour of CPU time, and the best feasible

solution recovered if the optimum is not found. Strengthened cut-set and cardinality-k cut-

set inequalities for certain partitions were pre-generated, and added to the formulation if

violated, at root node. We repeat the experiments with these metric-type inequalities, and

without; CPLEX default cuts are added for both.

In Table 6.1, we report the improvement of the integrality gap at the root node (root

improvement), the number of branch-and-bound nodes (b&b nodes), and the solution

times (time) or gap at termination (endgap), for runs with and without the metric-type

cuts. The results for experiments using only the CPLEX cuts are reported under heading

(1) and results for experiments using both CPLEX and metric-type cuts are reported

under heading (2).

We see in Table 6.1 that adding strengthened cut-set and cardinality-k cut-set in-

equalities more than doubles the improvement in the integrality gap at root node. On

average, the metric-type inequalities improve the integrality gap at the root node by 59%

on average, as compared with 22% for CPLEX default. This naturally manifests itself in
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Table 6.1: Performance of strengthened and cardinality-k cut-set inequalities

Size root improvement b&b nodes time (endgap)
|V | (1) (2) (1) (2) (1) (2)

6 14 70 155 29 0.11 0.04
7 17 69 698 96 0.60 0.16
8 32 53 2171 375 2.19 0.53
9 47 73 1017 276 1.22 0.50

10 17 68 3769 432 4.48 0.71
11 27 54 89669 8291 275 34.6
12 12 43 40916 4882 90.3 13.2
13 17 57 282470 10343 793 37.2
14 15 62 263989 2870 762 11.2
15 18 58 714969 21743 3451 135
16 22 57 483079 465627 ( 1.8 ) 3466
17 20 46 242806 262387 ( 1.6 ) ( 1.0 )

the computational performance of the branch-and-cut algorithm; we obtain an order of

magnitude reduction in the number of branch-and-bound nodes and solution times.

6.5 Conclusions

In this chapter, we developed metric-type inequalities for various network design prob-

lems using feasibility conditions derived from Farkas’ Lemma. Since these inequalities

do not violate any fractional solutions, we discussed techniques to strengthen them using

integer and mixed-integer rounding. We also developed new metric-type inequalities us-

ing results from the polyhedron of the mixed-integer knapsack set. We showed that many

classes of partition inequalities for NDP and SDC are special cases of these strengthened

metric inequalities. Using similar techniques, we developed new partition inequalities for

SDP. Finally, we presented computational results that illustrated the effect of these new

partition inequalities in solving SDP. When added as cutting planes in branch-and-cut

algorithm, these inequalities improved the computations by an order of magnitude.

This line of research using metric inequalities is by no means complete. We would like

to develop theoretical results on the strength of these new partition inequalities. We also

wish to develop other known inequalities as special cases of the metric-type inequalities,
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whenever possible. Finally, we would like to generalize this technique into a general

framework for developing metric-type inequalities for all network design problems, with or

without survivability requirements.
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Chapter 7

New valid inequalities for

mixed-integer knapsack sets

In this chapter, we present new inequalities for the mixed-integer knapsack set. First, we

analyze the mixed-integer knapsack set with two integer variables and one continuous

variable, and develop a polynomial algorithm that enumerates all the facets in its convex

hull. Then, we study the exact lifting function for the facets of the convex hull of this set,

and describe super-additive lower bounds for it. These super-additive lower bounds are

obtained from partial LP relaxations of the exact lifting function, and used in a sequence

independent lifting framework to develop strong valid inequalities for the mixed-integer

knapsack polyhedron. We present some sufficient conditions under which these lifted

inequalities define facets of mixed-integer knapsack sets with at most one continuous

variable. Finally, we summarize our computational experience with these inequalities.

7.1 Introduction

Let N be the index set of integer variables, and P the index set of continuous variables.

The mixed-integer knapsack set can be represented as

M(b) = {x ∈ Z
|N |
+ , w ∈ R

|P |
+ :

∑

i∈N

aixi +
∑

i∈P

giwi ≤ b, xi ≤ ui, i ∈ N, wi ≤ vi, i ∈ P}.
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We assume that the data is rational, except that vi may be infinite; ui are finite. No

assumptions are made on the sign of a,g, and b. Defining giwi as a new continuous

variable, without loss of generality we assume that gi ∈ {−1, 1} i ∈ P . Let P+ = {i ∈ P :

gi = 1}, P− = P \ P+, and PB = {i ∈ P : vi < ∞}. Finally, by complementing variables

if necessary, we can assume without loss of generality that PB ⊆ P+.

Since the optimization problem over all points satisfying any given constraint of a

mixed-integer program is its relaxation, any inequalities derived for the mixed-integer set

are valid, and can be used in a branch-and-cut framework to solve the mixed-integer

program; many successful attempts have been made to study several special cases of

the mixed-integer knapsack set.

Most seminal works have dealt with the pure-binary knapsack set, see Balas (1975),

Hammer et al. (1975), Wolsey (1975), and Zemel (1989) for a few examples. More re-

cently, others have studied the mixed-binary knapsack set (Marchand and Wolsey 1999,

Richard et al. 2002), the binary knapsack set with one integer variable (Brockmüller et al.

1996, Atamtürk and Rajan 2002, van Hoesel et al. 2002), and the pure-integer knapsack

set (Pochet and Wolsey 1995, Pochet and Weismantel 1998). In Ceria et al. (1998), the

authors extend the theory of knapsack covers to the integer knapsack set.

For a common presentation of recent research in cover (and pack) inequalities, and

new results for integer knapsack sets, see Atamtürk (2003a). However there is not much

work on the mixed-integer knapsack set, except the works on mixed-integer cuts (Gomory

1960), or the equivalent mixed-integer rounding cuts (Nemhauser and Wolsey 1990).

An alternative methodology for generating valid inequalities utilizes super-additive

functions; see Section 1.5.2. In this approach, one studies the shape of the lifting func-

tions of facet-defining inequalities of various restrictions of the set being analyzed. If

these are super-additive, then it is known that the restricted variables can be lifted in-

dependent of sequence to obtain facet-defining inequalities for the set (Atamtürk 2004).

This approach has been successfully adapted in obtaining facet-defining inequalities of

certain mixed-binary sets (Gu et al. 1999, Marchand and Wolsey 1999).

In Atamtürk (2003b), the author extends this approach to the mixed-integer knapsack
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set. He studies the restriction with exactly one integer variable and one continuous vari-

able, obtained by fixing all other variables to zero. The facet-defining inequality for this

restriction is the well-known mixed-integer rounding (MIR) inequality, see Section 1.5.2.

The author analyzes the lifting function for this inequality, and shows that it is super-

additive under certain conditions. Many known inequalities for special structured sets are

seen to be special cases of the inequalities in Atamtürk (2003b) that use super-additive

exact lifting functions. In general, however, the exact lifting function is not super-additive;

the author presents lower bounds that may be used instead.

7.1.1 Motivation

Theorem 7.1 (Atamtürk (2003b)) Any non-trivial facet-defining inequality πx+µw ≤ π0

of conv(M(b)) satisfies µi = 0, ∀i ∈ P+ \ PB, and µi = α, ∀i ∈ P−, for some α ∈ R−.

In other words, all continuous variables in P+ \ PB have coefficient equal to zero

in any facet-defining inequality of conv(M(b)). This allows us to ignore these variables

while studying the polyhedron of the set M(b). Furthermore, all continuous variables in

P− have the same coefficient in all facets of conv(M(b)). Thus, we can aggregate these

variables into a single non-negative unbounded continuous variable.

Obtaining facets of the mixed-integer knapsack polyhedron with a small number of

integer variables and lifting them could possibly lead to new classes of strong inequalities

for the mixed-integer knapsack polyhedron. One strong reason to suggest this is that

few of the facets of the convex hull of even the restriction with two integer variables and

one continuous variable can be obtained by the procedure studied by Atamtürk (2003b).

Formally, this restriction is defined as

M≤
2 (b) = {x1, x2 ∈ Z+ y ∈ R+ : a1x1 + a2x2 − y ≤ b, x1 ≤ u1, x2 ≤ u2}.

The following result allows us to obtain facets of conv(M(b)) in terms of facets of

conv(M≤
n (b′)), for specific values of b′.

Theorem 7.2 Let H ⊆ P+ and n = |N |. If πx − y ≤ π0 − v(H) defines a facet of

conv(M≤
n (b− v(H))), then πx+ w(H) − w(P−) ≤ π0 defines a facet of conv(M(b)).
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Proof See Appendix F.

Furthermore, lifting a facet-defining inequality πx+ w(H) − w(P−) ≤ π0 over M(b) is

equivalent to lifting πx − y ≤ π0 − v(H) over M≤
n (b − v(H)); by the variable substitution

y = w(P−) + v(H) − w(H). This motivates our focus on the restriction with two integer

variables and one continuous variable (M≤
2 (b)) in this study.

The converse of Theorem 7.2 is true when n = 1 (Atamtürk 2003b). In fact, when

n = 1, conv(M(b)) can be completely described and separated in linear time for all |P |

(Magnanti et al. 1993, Atamtürk and Rajan 2002). However, for any n > 1, no closed-form

description of conv(M(b)) is known when P+ 6= ∅. The optimization of a linear function

over M(b) can be done in polynomial time, for fixed n (Lenstra Jr. 1983).

Independently, Agra and Constantino (2003) develop valid inequalities for pure and

mixed-integer knapsack sets by studying a restriction with two integer variables and one

continuous variable. However, they do not consider upper bounds to the variables in the

set. Their work differs from ours primarily in that they use a group relaxation of the exact

lifting function to derive super-additive lower bounds.

7.1.2 Notation

Throughout this chapter, we will use M≤
n (b) to refer to the mixed-integer knapsack set

with n integer variables, one continuous variable, and right hand side b; K≤
n (b) (K≥

n (b))

to refer to the pure-integer knapsack set with n variables, a “≤” (“≥”) constraint, and right

hand side b.

The instance of K≥
n (b) parametrized by (a, u) is the same as the instance of

K≤
n (

∑n
i=1 aiui − b) parametrized by (a, u); obtained by the variable substitution x′i =

ui − xi, i ∈ [1, n]. We introduce K≤
n (b) purely for ease of exposition.

For any p ∈ Zn
+ ×R+, we denote its integral components by pi, i ∈ [1, n] and continu-

ous component by p0. We denote the components of any element q ∈ Zn by qi, i ∈ [1, n].

We assume that a, u, π ≥ 0; by complementing variables, if necessary. Furthermore, for

K≤
n (b), we assume without loss of generality that ai ≤ b, i ∈ [1, n]; since otherwise qi = 0

in all feasible solutions.
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7.1.3 Outline

In Section 7.2, we study the pure-integer restriction K≤
2 (b) with two integer variables.

We first present a bound on the number of extreme points in its convex hull, and then

present a polynomial-time algorithm that enumerates these points. In Kannan (1980), the

author presents an algorithm to optimize a linear function over K≤
2 (b). Our algorithm calls

Kannan’s algorithm once, and has the same complexity bound. These results serve as

crucial building blocks for the study ofM≤
2 (b) in Section 7.3, where we present a key result

that allows us to enumerate all extreme points (and hence facet-defining inequalities) of

conv(M≤
2 (b)) in polynomial-time.

In Section 7.5, we study the exact lifting function for the facet-defining inequalities of

conv(K≤
2 (b)) and conv(M≤

2 (b)), and describe lower bounds for them using their partial LP

relaxations. We generate super-additive lower bounds for the exact lifting function from

special cases of the two families of super-additive functions introduced in Section 7.4.

The super-additive lifting functions are then used to define valid inequalities to the the

pure-integer knapsack set K≤
n (b) and the mixed-integer knapsack set M≤

n (b). In Sec-

tion 7.6, we present some computational results that illustrate the effectiveness of these

inequalities. We conclude in Section 7.7 by summarizing the main results of the chapter.

7.2 Two integer variables

We first study the restriction of M≤
n (b) with two integer variables and no continuous vari-

able; denoted by K≤
2 (b). This is a simpler structure than M≤

2 (b); yet it provides significant

insight toward the polyhedral structure of M≤
2 (b). Let

K≤
2 (b) = {x1, x2 ∈ Z+ : a1x1 + a2x2 ≤ b, x ≤ u}.

We state the assumptions made in this section. Some of them are repeated in later

sections, and are referred to using the labels introduced here.

(A.0) We assume that all data is integral, and gcd(a1, a2) = 1, by scaling.

(A.1) We assume that a1 ≥ a2, by reordering the variables, if necessary.
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(A.2) We assume that a > 0, u > 0.

(A.3) We assume that a1 + a2 < b < a1u1 + a2u2.

(A.4) We assume without loss of generality that ui ≤ bb/aic i = 1, 2, since we can

replace ui by bb/aic otherwise.

Assumptions (A.2) and (A.3) are made to eliminate trivial cases. Non-zero lower

bounds can be easily handled by redefining variables as usual. We define t1 = (b −

a2u2)/a1 and t2 = (b− a1u1)/a2. Assumption (A.4) can be strengthened to

(A.4’) We assume that u1 = bb/a1c and u2 = bb/a2c.

To see why this is true, we first assume the contrary, and then propose a translation

that results in ui = bb/aic i = 1, 2. In Figure 7.1, we present the set K≤
2 (b); t1 and t2

are the intercepts of a1x1 + a2x2 ≤ b at the upper bound constraints. For i ∈ [1, 2], let qi

denote the solution of the axis xi = 0 and the upper bound constraint x2−i = u2−i; thus

q11 = 0, q12 = u2, and q21 = u1, q
2
2 = 0. Let q0 be the solution of the upper bound constraint

x2 = u2 and x1 = bt1c, and define q3 similarly. Thus, we have q0
1 = bt1c, q

0
2 = u2, and

q31 = u1, q
3
2 = bt2c.

Let q̄ be the origin; i.e., q̄1 = q̄2 = 0. We also define q4 as the point q41 = dt1e, q
4
2 =

u2−1. Since a1 ≥ a2 by assumption (A.1), using bt1c may not ensure that the upper bound

constraint x2 ≤ u2 is dominated; we use dt1e instead. Thus, the variable substitution

x′1 = x1 − dt1e, x′2 = x2 − bt2c results in a smaller set with redundant upper bound

constraints; see Figure 7.1.

Some of the extreme points and facet-defining inequalities of conv(K≤
2 (b)) are thus

lost in the translation from K≤
2 (b) to K ′; illustrated in Figure 7.1. We list these points and

facet-defining inequalities in the following propositions.

Proposition 7.3 The inequalities x1 ≥ 0, x2 ≥ 0 define facets of conv(K≤
2 (b)). Upper

bound constraints x1 ≤ u1 and x2 ≤ u2 define facets of conv(K≤
2 (b)) if and only if t2 ≥ 1

and t1 ≥ 1, respectively.

Proof See Appendix F.

Proposition 7.4 The points q1, q2, q̄, q0 (distinct from q1 if t1 > 1), and q3 (distinct from

q2 if t2 > 1) are extreme points of conv(K≤
2 (b)).
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Figure 7.1: Sets K≤
2 (b) and K ′

x′
2 = x2 − bt2c

x′
1 = x1 − dt1e

x2 x′
2

q1 x2 ≤ u2

q0
q4

q5

t2

a1x
′
1 + a2x

′
2 ≤ b − a1dt1e − a2bt2c

x1 ≤ u1

x′
1

x1
q2t1

q3

a1x1 + a2x2 ≤ b

q̄

Proof See Appendix F.

Proposition 7.5 The point q4 is an extreme point of conv(K≤
2 (b)) if and only if q5 /∈

K≤
2 (b); where q5 is defined as q51 = q41 + 1 and q52 = q42 − (q02 − q42).

Proof See Appendix F.

The remaining extreme points (and facet-defining inequalities) can be obtained by

studying the setK ′ = {x′1, x
′
2 ∈ Z+ : a1x

′
1+a2x

′
2 ≤ b−a1dt1e−a2bt2c}. Thus, assumption

(A.4’) can be made without loss of generality.

We present a polynomial bound in Section 7.2.1 on the number of extreme points

of conv(K≤
2 (b)), and a polynomial algorithm in Section 7.2.2 to enumerate all extreme

points of conv(K≤
2 (b)). The algorithm is also easily modified to enumerate the facets

of conv(K≤
2 (b)), since it gives us the extreme points in sequence. This algorithm calls

the algorithm presented by Kannan (1980) (which optimizes a linear function over K≤
2 (b))

once, and then solves a sequence of diophantine approximations. However, our algorithm

still has the same complexity bound as in Kannan (1980).
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Alternatively, Kannan’s algorithm can be extended to enumerate all the extreme points

of conv(K≤
2 (b)) in sequence. This extension is due to comprehensive book-keeping,

resulting in an algorithm that is not easy to describe. Nevertheless, this variant provides a

constructive proof for an alternative polynomial bound on the number of extreme points of

K≤
2 (b). In Weismantel (1995), the author presents an enumerative algorithm for obtaining

on the facets of conv(K≤
2 (b)) using related Hilbert bases. It is closely related to the

polynomial vertex enumeration algorithm introduced in Section 7.2.2; however, the author

performs no complexity analysis of his algorithm.

7.2.1 Number of extreme points

Definition 7.6 Extreme point q of conv(K≤
2 (b)) is non-trivial if q > 0; extreme point q of

conv(K≥
2 (b)) is non-trivial if q < u.

We use π1x1 + π2x2 ≤ π0 to denote facets of conv(K≤
2 (b)); by scaling, we assume

without loss of generality that πi ∈ Z i = [0, 2]. Let γ = min{a2 − 1, u1, u2}. We define

extreme points qD and qU of conv(K≥
2 (b)) as follows; ε is a small strictly positive constant.

Definition 7.7 Let qD = arg maxx{(a1 + ε)x1 + a2x2 : x ∈ K≤
2 (b)}, and qU =

arg maxx{a1x1 + (a2 + ε)x2 : x ∈ K≤
2 (b)}.

Then, for all the facets of conv(K≤
2 (b)) defined by extreme points qa and qb such that

qa
1 ≤ qU

1 and qb
1 ≤ qU

1 , we have π1/π2 < a1/a2; see Figure F.1. Similarly, for all the facets

of conv(K≤
2 (b)) defined by extreme points qa and qb such that qa

1 ≥ qD
1 and qb

1 ≥ qU
1 , we

have π1/π2 > a1/a2.

Theorem 7.8 The number of non-trivial extreme points of K≤
2 (b) is bounded from above

by 2blog(γ + 1)c + 2.

Proof See Appendix F.

Since we assumed that (A.4’) is true, in general, we also have to include the points

lost in the translation that validates this assumption: q1, q2, q̄ and q0 (if distinct from

q1); see Figure 7.1. Thus, we can bound from above the number of extreme points of

conv(K≤
2 (b)) by 2blog(γ + 1)c + 6, where γ is defined for the reduced set K ′.
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This bound is often weak; however, tight examples exist, even with small coefficients.

For instance, the convex hull of the following instance ofK≤
2 (33) has eight extreme points,

see Figure 7.2. When K≤
2 (33) = {x1, x2 ∈ Z+ : 5x1 + 2x2 ≤ 33, x1 ≤ 6, x2 ≤ 12}, we

have t1 = 1.8, t2 = 1.5, and the reduced set K ′ = {x1, x2 ∈ Z+ : 5x1 + 2x2 ≤ 21, x1 ≤

4, x2 ≤ 10}. Thus, γ = 1; therefore the bound is tight.

Figure 7.2: Tight example

x1

x2

x2 ≤ 12

5x1 + 2x2 ≤ 33

x1 ≤ 6

7.2.2 Polynomial vertex enumeration algorithm

Next, we present a polynomial-time algorithm that enumerates all the extreme points of

conv(K≤
2 (b)). This algorithm first calls the algorithm by Kannan (1980), and then solves

a polynomial number of diophantine approximations.

7.2.2.1 Diophantine approximation

Definition 7.9 The diophantine approximation is the optimization problem

Ω(c, d, κ) = min
δ1,δ2

{|
c

d
−
δ1
δ2
| : δ1, δ2 ∈ Z++, δ2 ≤ κ}, (7.1)

where c, d, κ > 0.
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Since c and d are chosen arbitrarily, we assume without loss of generality that c ≥ d;

thus δ1 ≥ δ2. We define two problems that require the lower and upper approximations,

and denote the solutions by Ω(c, d, κ) and Ω(c, d, κ). Formally, Ω(c, d, κ) = minδ1,δ2{
c
d −

δ1
δ2

: δ1, δ2 ∈ Z++, δ2 ≤ κ, δ1
δ2

≤ c
d}; and Ω(c, d, κ) = minδ1,δ2{

δ1
δ2

− c
d : δ1, δ2 ∈ Z++, δ2 ≤

κ, δ1
δ2

≥ c
d}.

We describe how the diophantine approximation problem can be solved in polynomial

time, (Nemhauser and Wolsey 1988, Section I.7). First, we run the Euclidean algorithm

on c and d. The Euclidean algorithm computes the greatest common divisor of two given

integers. As a by-product, it gives us a sequence of positive integers {si, ti, i ∈ [1, T ]},

such that gcd(c, d) = −cti + dsi, i ∈ [1, T ]. Since c ≥ d, we can assume that si ≥ ti, i ∈

[1, T ]. Let Fi be the ith number of the Fibonacci series, which grows exponentially fast.

Since tT ≥ FT−1, the Euclidean algorithm runs in O(log d) time.

This sequence of numbers also define a sequence of ratios si/ti, i ∈ [1, T ] that are

successively stronger approximations to c/d. In fact, any two adjacent terms in this se-

quence provide lower and upper approximations to c/d; i.e., either si/ti ≤ c/d ≤ si+1/ti+1

or si/ti ≥ c/d ≥ si+1/ti+1. Then, the optimal solution to (7.1) can be obtained from this

sequence, as described by Proposition 7.10.

Proposition 7.10 (Nemhauser and Wolsey (1988)) Let j = max{i : ti ≤ κ} and

k = b(κ− tj−1)/tjc. Then Ω(c, d, κ) is either sj/tj or (ksj + sj−1)/(ktj + tj−1).

If sj/tj ≥ c/d, then (ksj + sj−1)/(ktj + tj−1) ≤ c/d, and vice versa. Thus, Proposi-

tion 7.10 also describes the solutions to Ω(c, d, κ) and Ω(c, d, κ).

7.2.2.2 Description of algorithm

We begin by solving q∗ = arg maxx{a1x1 + a2x2 : a1x1 + a2x2 ≤ b, x ∈ Z2
+} in O(log a2)

time using the algorithm in Kannan (1980).

The point q∗ is on some facet of conv(K≤
2 (b)) such that qU

1 ≤ q∗1 ≤ qD
1 ; see Def-

inition 7.7. Starting with q∗, we obtain all extreme points of conv(K≤
2 (b)) by solving a

sequence of diophantine approximations.
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First, we enumerate the extreme points q such that q1 ≤ qU
1 . as follows. The point

qi−1 can be obtained from qi. Let δi = arg min Ω(ci, di, κi), where ci = a1, di = a2, and

κi = qi
1. Then,

qi−1
1 = r(qi

1, δ
i
2), qi−1

2 = (qi
1 − qi−1

1 )
δi
1

δi
2

+ qi
2.

If qi−1
1 = qi

1 − δi
2, then qi−1

2 = qi
2 + δi

1. This operation is repeated until qi−1
1 = 0.

Next, given extreme point qi such that qi
1 ≥ qD

1 , we can obtain qi−1. Let δi =

arg min Ω(ci, di, κi), where ci = a1, di = a2, and κi = bb/a1c − qi
1. Then,

qi−1
2 = r(qi

2, δ
i
1), qi−1

1 = (qi
2 − qi−1

2 )
δi
2

δi
1

+ qi
1.

If qi−1
2 = qi

2 − δi
1, then qi−1

1 = qi
1 + δi

2. This operation is repeated until qi−1
2 = 0. Next, we

discuss the complexity of this algorithm.

From Theorem 7.8, the number of extreme points of conv(K≤
2 (b)) is O(log a2), since

a2 ≥ γ by definition. For each extreme point, we need to solve (7.1) once.

The first two parameters of the optimization problems Ω and Ω never change, since

ci = a1, di = a2. This implies that we need to execute the Euclidean algorithm only once,

to obtain the sequence {si/ti, i ∈ [1, T ]}.

On the other hand, κi changes with i. However, κi is monotonic in i; decreasing

when qi
1 ≤ qU

1 and when qi
1 ≥ qD

1 . We calculate the extreme points from both sets

simultaneously by comparing the next κ from the two sets, and first solving (7.1) for the

set with larger κ. Thus, we need to traverse the list {ti, i ∈ [1, T ]} only once to calculate

j = max{i : ti ≤ κ} for all extreme points.

Given j, (7.1) can be solved in constant time. Thus, all extreme points of conv(K≤
2 (b))

can be enumerated in O(log a2) if we are given q∗ and {si, ti, i ∈ [1, T ]}. We store

the extreme points obtained from the two sets in separate lists since we want them in

sequence.

The point q∗ can be obtained in O(log a2) by the algorithm in Kannan (1980). Further-

more, the Euclidean algorithm runs in O(log a2) time. We have proved the following.

Proposition 7.11 All extreme points of K≤
2 (b) can be enumerated in O(log a2) time.
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7.2.2.3 Enumerating facets of conv(K≤
2 (b)) in polynomial time

The algorithm can be easily extended to enumerate the facets of conv(K≤
2 (b)). Since it

obtains adjacent extreme points in sequence, we need to compute the equalities that are

defined by adjacent pairs of extreme points; this can be done in constant time per pair,

leading to an O(log a2) algorithm to enumerate all facets.

Obtaining these extreme points in sequence also allows us to compute the facets of

conv(M≤
2 (b)) much more efficiently; in Section 7.3.2.

7.3 Two integer variables and one continuous variable

In this section, we study the mixed-integer set with two integer variables and one contin-

uous variable

M≤
2 (b) = {x1, x2 ∈ Z+ y ∈ R+ : a1x1 + a2x2 − y ≤ b, x1 ≤ u1, x2 ≤ u2}.

We repeat assumptions (A.0)-(A.1) from Section 7.2. We also make assumption (A.2);

else the set reduces to the set studied by Atamtürk (2003b). Again, note that non-zero

lower bounds can be easily handled by redefining variables as usual.

We present a key result that relates the extreme points of conv(M≤
2 (b)) to the extreme

points of conv(K≤
2 (b)) and conv(K≥

2 (b)). The result is much stronger; it describes a one-

to-one correspondence between the extreme points of conv(M≤
n (b)) and the extreme

points of conv(K≤
n (b)) and conv(K≥

n (b)).

This result immediately gives us an upper bound on the number of extreme points of

conv(M≤
2 (b)), and an algorithm to enumerate them in polynomial time. We also present

an efficient polynomial-time algorithm to calculate all the facets of conv(M≤
2 (b)).

7.3.1 Extreme points

Before we present the main result of this section, we prove the following lemma, which

characterizes one component of any extreme point of conv(M≤
2 (b)).
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Lemma 7.12 If p is an extreme point of conv(M≤
n (b)), then either p0 = 0 or p0 =

∑n
i=1 aipi − b.

Proof See Appendix F.

Now, we are ready for the main result; we prove a one-to-one correspondence be-

tween the extreme points of conv(M≤
n (b)) and that of conv(K≤

n (b)) and conv(K≥
n (b)). By

Lemma 7.12, we only need to consider p ∈M≤
n (b) such that p0 = 0 or p0 =

∑n
i=1 aipi − b.

Theorem 7.13 Let p ∈ M≤
n (b) and q ∈ Rn

+ such that qi = pi, i ∈ [1, n]. If p0 = 0, then

p is an extreme point of conv(M≤
n (b)) if and only if q is an extreme point of conv(K≤

n (b)).

On the other hand, if p0 =
∑n

i=1 aipi − b, then p is an extreme point of conv(M≤
n ) if and

only if q is an extreme point of conv(K≥
n (b)).

Proof See Appendix F.

Theorem 7.13 gives us a one-to-one correspondence between the extreme points

of conv(M≤
2 (b)), and those of conv(K≤

2 (b)) and conv(K≥
2 (b)). This allows us to use the

results in Section 7.2 to present similar results forM≤
2 (b). For instance, from Section 7.2.1

and Theorem 7.13, we can bound the number of extreme points of conv(M≤
2 (b)).

Theorem 7.14 The number of extreme points in conv(M≤
2 (b)) is no greater than

4blog(γ + 1)c + 12, where γ = min{a2 − 1, u1, u2}.

Similarly, using Theorem 7.13 and the vertex enumeration algorithm presented in

Section 7.2.2, we can obtain all extreme points of conv(M≤
2 (b)) in polynomial time.

Proposition 7.15 All the extreme points of the polyhedron conv(M≤
2 (b)) can be enumer-

ated in O(log a2) time.

Next, we present some structural results that allow us to enumerate the facets of

conv(M≤
2 (b)) efficiently. Given a sorted list of extreme points (see Section 7.3.2 for the

sorting criteria), our algorithm obtains all facets of conv(M≤
2 (b)) in time linear in the num-

ber of extreme points of conv(M≤
n (b)). This is much more efficient than running a generic

convex hull algorithm such as Graham Scan (Cormen et al. 2001), which runs in cubic

time in the number of extreme points.
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Once we enumerate all the extreme points of conv(M≤
2 (b)), optimizing a linear func-

tion over M≤
2 (b) can be done trivially in time linear in the number of extreme points by

calculating the objective value at each extreme point. Summarizing, we can obtain the

facets of conv(M≤
2 (b)) and optimize over the set M≤

2 (b) in polynomial time, since we can

enumerate the extreme points in polynomial time.

7.3.2 Facets

Let X≤ and X≥ be the non-trivial extreme points of conv(K≤
2 (b)) and conv(K≥

2 (b)), re-

spectively; see Definition 7.6. Let Z≤ and Z≥ be the corresponding extreme points of

conv(M≤
2 (b)). From Lemma 7.12, p0 = 0 for p ∈ Z≤ and p0 = a1p1 + a2p2 − b for p ∈ Z≥.

We first present structural results about the non-trivial facets of conv(M≤
n ), and then

present the algorithm that obtains these facets efficiently; we refer to all facets other than

those defined by the upper and lower bounds on the variables as non-trivial facets.

We assume that the sets Z≤ and Z≥ are sorted in increasing order of p2, for p ∈ Z≤

and p ∈ Z≥, respectively; breaking ties in decreasing order of p1. Henceforth, we treat

them as ordered sets; referring to elements as “adjacent to”, “previous to”, “next to”,

“between”, “before”, and “after” other elements. We use the following notation for each of

these terms.

p̂ before p̄ p̂ ≺ p̄ p̂2 ≤ p̄2 and p̂1 ≥ p̄1

p̂ after p p̂ � p̄ p̂2 ≥ p̄2 and p̂1 ≤ p̄1

p̂ previous to p̄ p̂ � p̄ p̂ ≺ p̄ and 6 ∃p such that p̂ ≺ p ≺ p̄

p̂ next to p̄ p̂ � p̄ p̂ � p̄ and 6 ∃p such that p̂ � p � p̄

p̂ adjacent to p̄ p̂ � p̄ p̂ � p̄ or p̂ � p̄

p between p̄ and p̂ p ∈ f(p̂, p̄) p such that p̂ ≺ p ≺ p̄ or p̂ � p � p̄

For any point p(·) in Z≤ (Z≥), we denote the corresponding point in X≤ (X≥) by q(·).

The preceding relations are also defined for the elements of X≤ and X≥.

We use triples of extreme points to define a half-space in R3. By definition, the ex-
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treme points in such a triple are affinely independent. Furthermore, they either define a

facet or are invalid, in which case the hyperplane defined by them passes through the in-

terior of conv(M≤
n ). There might be more extreme points on the hyperplane defining this

half-space; however, three points are sufficient to define it. In this discussion, we mostly

ignore the degenerate case where more than three points lie on the same hyperplane.

By scaling, any half-space containing conv(M≤
2 (b)) can be written as π1x1+π2x2−y ≤

π0 without loss of generality, for π1, π2, π0 ∈ R+. Lemma 7.17 shows that π1, π2, and

π0 ∈ Z+ if this half-space is a non-trivial facet of conv(K≤
2 (b)). This result does not in any

way influence the analysis in this chapter, but is interesting nonetheless; independently

shown by Agra and Constantino (2003).

The following Lemmas provide an insight into the structure of conv(M≤
n (b)). They

characterize several properties that any triple of extreme points defining a facet must

satisfy. We assume throughout that p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥. Since these pairs of

points are chosen arbitrarily, we assume without loss of generality that p1 is before p3 and

p2 is before p4; i.e., p1 ≺ p3 and p2 ≺ p4.

Lemma 7.16 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. Then, no

non-trivial facet of conv(M≤
n (b)) can be defined by p1, p3, and some p ∈ Z≤; or by p2, p4,

and some p ∈ Z≥.

Proof See Appendix F.

From Lemma 7.16, any non-trivial facet of conv(M≤
2 (b)) belongs to one of two possible

families, depending on whether it is defined by p1, p3, and p2; or p1, p2, and p4. For the

rest of this discussion, we state the results for both families; however, we only prove the

lemmas for the former.

To obtain the hyperplane defined by three points, we need to calculate the equation

of the plane that passes through these points. This can be done in constant time. How-

ever, we do this more efficiently using information from the analysis of conv(K≤
2 (b)) and

conv(K≥
2 (b)); from Lemma 7.17. This lemma characterizes the half-spaces defined by

these points in terms of the half-spaces defined by their counterparts in X≤ (or X≥), in

two-dimensions. Lemma 7.17 also proves that πi ∈ Z+, i ∈ [0, 2].
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Lemma 7.17 Let Γ(p̄, p̂) = (a1p̄1 + a2p̄2 − b)/(p̂1p̄1 + p̂2p̄2 − p̂0). Let p1, p3 ∈ Z≤ and

p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. Consider the half-space π1x1 + π2x2 − y ≤ π0.

If it is defined by p1, p3, and p2, then πi = Γ(p2, π′)π′i, i ∈ [0, 2], where q1, q3 define the

half-space π′1x1 + π′2x2 ≤ π′0. On the other hand, if it is defined by p1, p2, and p4, then

πi = ai − Γ(p1, π′)π′i, i = 1, 2 and π0 = b− Γ(p1, π′)π′0, where q2, q4 define the half-space

π′1x1 + π′2x2 ≥ π′0. Furthermore, Γ ∈ Z+ in either case if the hyperplane is a facet of

conv(M≤
2 (b)).

Proof See Appendix F.

Lemmas 7.18, 7.19 and 7.18 present conditions under which pairs of extreme points

may define faces of conv(M≤
2 (b)). The latter two lemmas consider pairs belonging to the

same set (either Z≤ or Z≥), whereas Lemma 7.18 considers one point in Z≤ and the

other in Z≥.

Lemma 7.18 proves that if p1 ∈ Z≤ and p4 ∈ Z≥ define a face of conv(M≤
2 (b)), then

no face can be defined by using elements after p1 from Z≤ and elements before p4 from

Z≥. This is equivalent to proving that no two faces of conv(M≤
2 (b)) may intersect when

projected onto the space of x1 and x2.

Lemma 7.18 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. Unless

p1, p3, p2, and p4 define the same hyperplane, either the line joining p1 and p4, or the line

joining p2 and p3 is not a non-trivial face of conv(M≤
2 (b)).

Proof See Appendix F.

Lemma 7.19 proves that for any non-trivial facet, the two extreme points belonging

to the same set must be adjacent points in the set. It does this by proving that for any

half-space defined by p1, p3 ∈ Z≤ and some p ∈ Z≥ (p2, p4 ∈ Z≥ and some p ∈ Z≤) does

not contain any points between p1 and p3 (p2 and p4).

Lemma 7.19 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. The half-

space π1x1 + π2x2 − y ≤ π0 defined by p1, p3, and p2 does not contain any p ∈ Z≤ such

that p ∈ f(p1, p3). Similarly, the half-space defined by p1, p2, and p4 does not contain

p ∈ Z≥ such that p ∈ f(p2, p4).
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Proof See Appendix F.

Since we are only interested in facets, we are only interested p1, p3 that are adjacent

elements of Z≤, and p2, p4 that are adjacent elements of Z≥. Therefore, we can assume

that p1 is previous to p3, and that p2 is previous to p4. Lemma 7.20 proves that we need

to consider all pairs of adjacent elements; and that each pair defines a non-trivial facet

with some element in the other set.

Lemma 7.20 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 � p3 and p2 � p4. Then, p1, p3

define a facet with some p ∈ Z≥, and p2, p4 define a facet with some p ∈ Z≤.

Proof See Appendix F.

Now, we know that facets can be obtained by considering all adjacent points in Z≤

and Z≥. We still need to determine which point in Z≥ defines a facet with adjacent points

p1, p3 ∈ Z≤, and similarly for p2, p4 ∈ Z≥.

Two questions need to be addressed here: which combinations of adjacent points

to consider, and how to check whether the hyperplane defined by them is a facet. The

following two lemmas resolve these two issues, thus proving correctness of the algorithm

presented subsequently.

Lemma 7.21 allows us to parse through these pairs of adjacent points in sequence.

It proves that if we have already considered all pairs of points before p1 ∈ Z≤ and before

p2 ∈ Z≥, then either p1, p3, and p2; or p1, p2, and p4 must define a facet. We also denote

the elements previous to p1 and p2 by p5 ∈ Z≤ and p6 ∈ Z≥, respectively.

Lemma 7.21 Let p5, p1, p3 ∈ Z≤ and p6, p2, p4 ∈ Z≥ such that p5 � p1 � p3 and p6 �

p2 � p4. If either p1, p6, and p2; or p5, p1, and p2 define a facet, then so do either p1, p3,

and p2; or p1, p2 and p4.

Proof See Appendix F.

Thus, Lemma 7.21 answers the first question: which combinations of extreme points

to check. On the other hand, Lemma 7.22 proves that any half-space defined by two

adjacent points in a set contains all other points in that set. Furthermore, it shows that

if it contains the next (previous) element in the other set, it contains all elements after
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(before) it. Therefore, it answers the second question: how to check if a hyperplane

defines a facet.

Lemma 7.22 Let p5, p1, p3 ∈ Z≤ and p6, p2, p4 ∈ Z≥ such that p5 � p1 � p3 and p6 �

p2 � p4. The half-space π1x1 + π2x2 − y ≤ π0 defined by p1, p3, and p2 contains all p ∈

Z≤, p 6= p1, p3. Furthermore, if it contains p4 (p6), then it contains all points p (p′) ∈ Z≥

such that p � p4 (p′ ≺ p6). Similarly, the half-space defined by p2, p4, and p1 contains

all p ∈ Z≥, p 6= p2, p4. Furthermore, if it contains p3 (p5), then it contains all points

p (p′) ∈ Z≤ such that p � p3 (p′ ≺ p5).

Proof See Appendix F.

This gives us an algorithm to enumerate all the facets of conv(M≤
2 (b)). We sketch

the pseudo-code, which we refer to as Facet2. All special cases, such as trivial facets,

p ∈ Z≤ ∩ Z≥, four points on a hyperplane, etc., are handled appropriately; they are not

discussed here. Since Z≤ and Z≥ are sorted, we treat them as arrays (lists); we denote

the ith element by Z(·)[i] We add the facets we obtain to list L.

Facet2(Z≤, Z≥)

i = 1, j = 1

While i < |Z≤| or j < |Z≥|

If the half-space defined by Z≤[i], Z≥[j], and Z≤[i+1] contains Z≥[j+1] and Z≥[j−1],

then

Z≤[i], Z≥[j], and Z≤[i+ 1] define a facet.

Add it to L

i = i+ 1

else

Z≤[i], Z≥[j], and Z≥[j + 1] define a facet.

Add it to L

j = j + 1

end if

end while

If i = |Z≤|,
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then

Z≤[i], Z≥[k], and Z≥[k + 1] define a facet for all j ≤ k < |Z≥|.

Add them to L.

else

Z≤[k], Z≤[k + 1], and Z≥[j] define a facet for all i ≤ k < |Z≤|.

Add them to L. end if

In Section 7.2.2, we obtain the extreme points of conv(K≤
2 (b)) in sequence. Thus, the

extreme points of conv(M≤
2 (b)) are already available as two separate sorted lists Z≤ and

Z≥. Hence, using Facet2, from the extreme points of conv(M≤
2 (b)) using the algorithm

in Section 7.2.2; we enumerate all facets of conv(M≤
2 (b)) in O(log γ), since we have

O(log γ) extreme points. This is important since we can now compute all the facets of

conv(M≤
2 (b)) efficiently.

Next, we study certain classes of two-slope super-additive functions that will be used

in Section 7.5 to characterize in closed form super-additive lower bounds for the facets of

conv(K≤
2 (b)) and conv(M≤

2 (b)).

7.4 Super-additive functions

In this section, we introduce some properties of super-additive functions. Then, we study

two closely related families of two-slope functions and describe the conditions under

which they are super-additive. We also describe super-additive lower bounds to these

functions when these conditions are not satisfied. These families of functions generalize

the lifting functions developed in Section 7.5 and are used to generate super-additive

lower bounds for them.

From Definition 1.39, a function f : Rm 7→ R is super-additive on D ⊆ Rm if f(d1) +

f(d2) ≤ f(d1 + d2) for all d1, d2 ∈ D such that d1 + d2 ∈ D. We restrict our attention to

D ⊆ R. In particular, we consider 0 ≤ D ≤ b for K≤
2 (b), and D ≥ 0 for M≤

2 (b). We state

the following known results.

Proposition 7.23 (Nemhauser and Wolsey (1988)) If f : Rm 7→ R is super-additive,
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then f(0) ≤ 0.

Proposition 7.24 (Agra and Constantino (2003)) If f : Rm
+ 7→ R is convex and f(0) ≤

0, then f is super-additive.

The two families of two-slope functions introduced in Section 7.4 are very closely

related. In fact, f(d) and g(d) are piecewise linear functions that differ only in the first

piece, i.e., when d ≤ e; where f and g correspond to family 1 and family 2, respectively;

see Figure 7.3.

Figure 7.3: Families of repeating two-slope functions

d
c

e e+ ρ

f(d)

c+ αρ

e+ β
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c+ γ

c+ γ

e+ 2β

e+ 2β
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7.4.1 Family 1

Consider the function

f(d) =























c− δ(e− d) if d ≤ e,

c+ γk + α(d− βk − e) if e+ βk ≤ d ≤ e+ β(k + 1) + ρ,

c+ γ(k + 1) − δ(e+ β(k + 1) − d) if e+ βk + ρ ≤ d ≤ e+ β(k + 1),

for k ≥ 0 and integer. We assume that the parameters β, γ, e, c, δ, ρ, α are non-negative,

and ρ < β, δ ≤ γ/β, α = (γ − δ(β − ρ))/ρ ≥ γ/β. Thus, α is defined in terms of the other

parameters, and is introduced only for the sake of notational convenience.

Let c0 = eδ, c1 = (e+β)δ−γ = eδ−ρ(α−δ), and c2 = α(e−β)+γ = eα−(β−ρ)(α−δ).

We assume that c ≤ c0 to ensure that f(0) ≤ 0, see Proposition 7.23. When ρ = 0,

α is undefined; therefore, c2 is undefined if ρ = 0. It can be shown easily c2 ≤ c1 if and

only if e ≤ β − 2ρ. The proofs that follow assume that ρ > 0; however they can be easily

modified for the case ρ = 0.

Proposition 7.25 If e ≥ β − ρ, then f is super-additive.

Proof See Appendix F.

For the rest of Section 7.4.1, we assume that e < β − ρ.

Proposition 7.26 f is super-additive if and only if c ≤ c1 or c ≤ c2.

Proof See Appendix F.

We now present two super-additive lower bounds for f if e < β − ρ, c > c1 and

c > c2. These two functions f1 and f2 are parametrized using β′, γ′, e′, c′, δ′, ρ′, and α′.

We assume that ρ > 0, and treat ρ = 0 separately in Section 7.4.3.1.

To obtain the former, we fix δ, and modify α, ρ to get f1. f1(d) = fβ′,γ′,e′,c′,δ′,ρ′,α′(d),

where β′ = β, γ′ = γ, e′ = e, c′ = c, δ′ = δ, α′ = (γ−c)/(β−e), and ρ′ = (γ−δβ)/(α′−δ).

f1 is super-additive since c′ = c′2. Since c > c2, we have α′ < α; therefore f1 ≤ f .

For the latter, we fix α and modify δ, ρ to obtain f2. f2(d) = fβ′,γ′,e′,c′,δ′,ρ′,α′(d), where

β′ = β, γ′ = γ, e′ = e, c′ = c, δ′ = (c+ γ)/(e+ β), ρ′ = (eδ′ − c)/(α− δ′), and α′ = α. f2

is super-additive since c′ = c′1. Since c > c1, we have δ′ > δ; therefore f2 ≤ f .
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7.4.2 Family 2

Consider the function

g(d) =



































c− γ + α(d+ β − e) if d ≤ e+ ρ− β,

c− δ(e− d) if e+ ρ− β ≤ d ≤ e,

c+ γk + α(d− βk − e) if e+ βk ≤ d ≤ e+ β(k + 1) + ρ,

c+ γ(k + 1) − δ(e+ β(k + 1) − d) if e+ βk + ρ ≤ d ≤ e+ β(k + 1),

for k ≥ 0 and integer. We assume that all parameters β, γ, e, c, δ, ρ, α are non-negative,

ρ < β, δ ≤ γ/β, α = (γ − δ(β − ρ))/ρ ≥ γ/β. As before, α is introduced only for the sake

of notational convenience.

Again, let c0 = eδ, c2 = α(e− β) + γ = eα− (β− ρ)(α− δ), and c3 = α(e− 2β) + 2γ =

eα − 2(β − ρ)(α − ρ). When ρ = 0, α is undefined, and g is not precisely defined for

d ≤ e − β. Hence, we do not consider ρ = 0. Furthermore, we only consider e > β − ρ,

since g is the same as f if e ≤ β − ρ. We assume that c ≤ c2 to ensure that g(0) ≤ 0, see

Proposition 7.23. It is easy to see that c3 ≤ c0 if and only if e ≤ 2(β − ρ).

Proposition 7.27 g is super-additive if and only if c ≤ c0 or c ≤ c3.

Proof See Appendix F.

Next, we present two super-additive lower bounds of g if c > c0 and c > c3.

For the first, we fix δ and modify α, ρ to obtain g1. g1(d) = gα′,β′,δ′,γ′,e′,c′,ρ′(d), where

β′ = β, γ′ = γ, δ′ = δ e′ = e, c′ = c, α′ = (2γ − c)/(2β − e), and ρ′ = (γ − δβ)/(α′ − δ). g1

is super-additive since c′ = c′3. Since c > c3, we have α′ < α; therefore g1 ≤ g.

For the second, we fix α and modify δ, ρ to get g2. g2(d) = gα′,β′,δ′,γ′,e′,c′,ρ′(d), where

β′ = β, γ′ = γ, α′ = α, e′ = e, c′ = c, δ′ = c/e, and ρ′ = (γ − βδ′)/(α − δ′). g2 is

super-additive since c′ = c′0. Since c > c0, we have δ′ > δ; therefore g2 ≤ g.

7.4.3 Important special cases

7.4.3.1 Special case of family 1 with ρ = 0

Next, we discuss the important special case of Family 1 where ρ = 0. In this case, α

is undefined. The following results can be obtained easily from the general exposition;
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however the special case merits special attention since the lifting function often belongs

to this sub-family. To be precise, we consider the function

f ′(d) =











c− δ(e− d) if d ≤ e,

c+ γ(k + 1) − δ(e+ β(k + 1) − d) if e+ βk < d ≤ e+ β(k + 1),

for k ≥ 0 and integer. Again, δ ≤ γ/β, and all parameters are non-negative. As before,

we let c0 = eδ and assume that c ≤ c0. Again, we define c1 = (e+β)δ−γ. c2 is undefined

if ρ = 0 (since α is undefined). From Propositions 7.25 and 7.26, we get the following

results as corollaries.

Corollary 7.28 If e ≥ β, then f ′ is super-additive.

Corollary 7.29 When e < β, f ′ is super-additive if and only if c ≤ c1.

Next, we characterize in closed form two super-additive lower bounds to f ′ when

e < β and c > c1.

For the first, we fix δ and modify α, ρ to get f ′1. f ′1(d) = fβ′,γ′,e′,c′,δ′,ρ′,α′(d), where

β′ = β, γ′ = γ, e′ = e, c′ = c, δ′ = δ, α′ = (γ − c)/(β − e), and ρ′ = (γ − δβ)/(α′ − δ). f ′1

is super-additive since c′ = c′2 (as defined for f ). Since α′ < α; therefore f ′1 ≤ f ′.

For the second super-additive lower bound, we fix γ and modify δ, ρ as follows to

obtain f ′2. f ′2(d) = f ′β′,γ′,e′,c′,δ′,ρ′,α′(d), where β′ = β, γ′ = γ, e′ = e, c′ = c, δ′ = (c +

γ)/(e + β), and ρ′ = 0. f2 is super-additive since c′ = c′1. Since c > c1, we have δ′ > δ;

therefore f ′2 ≤ f ′.

7.4.3.2 Special case of family 2 with δ = 0

Next, we discuss the important special case of Family 2 where δ = 0. Again, this special

case merits special attention since the lifting function often belongs to this sub-family. We

consider the function

g′(d) =



































c− γ + α(d+ β − e) if d ≤ e+ ρ− β,

c if e+ ρ− β ≤ d ≤ e,

c+ γk + α(d− βk − e) if e+ βk ≤ d ≤ e+ β(k + 1) + ρ,

c+ γ(k + 1) if e+ βk + ρ ≤ d ≤ e+ β(k + 1),
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for k ≥ 0, where ρ < β, α ≥ γ/β, and all parameters are non-negative. As before, c0 = 0,

c2 = α(e + ρ− β), and c3 = eα − 2(β − ρ)α. We only consider e > β − ρ. (Section 7.4.1

covers e ≤ β − ρ.) As before, we assume that c ≤ c2. The following result follows as a

corollary of Proposition 7.27.

Corollary 7.30 g′ is super-additive if and only if c ≤ c3.

Next, we present the two super-additive lower bounds of g′ if c > c3.

First, we modify both α and ρ to obtain the super-additive lower bound g′1. g′1(d) =

g′α′,β′,γ′,e′,c′,ρ′(d), where β′ = β, γ′ = γ, e′ = e, c′ = c, α′ = (2γ− c)(2β− e), and ρ′ = γ/α′.

g′1 is super-additive since c′ = c′3. Since c > c3, we have α′ < α; therefore g′1 ≤ g′.

Next, we fix α and modify δ, ρ to obtain the super-additive lower bound g′2. g′2(d) =

gα′,β′,γ′,e′,c′,ρ′(d), where β′ = β, γ′ = γ, α′ = α, e′ = e, c′ = c, δ′ = c/e, and ρ′ =

(γ − βδ′)/(α − δ′). g′2 is super-additive since c′ = c′0 (as defined for g). Since c > c0, we

have δ′ > δ; therefore g′2 ≤ g′.

7.5 Exact lifting function

In this section, we study the exact lifting function for facets to the convex hull of set M≤
2 .

The exact lifting function is obtained by solving a parametric optimization problem, see

Section 1.5.2. From Section 7.3, we know how to optimize a linear function over the set

M≤
2 in polynomial time; however, no closed-form characterization is known.

We propose and describe various lower bounds for the exact lifting function. We use

these lower bounds to develop super-additive lower bounds for the exact lifting function.

We use these super-additive lifting functions in a sequence independent lifting framework

to develop new classes of strong inequalities for K≤
n (b) and M≤

n (b).

We begin this section by studying the exact lifting function for facets of conv(K≤
2 (b)),

which is a similar, yet simpler polyhedron. Then, we study the exact lifting function for

facets of conv(M≤
2 (b)). For both cases, we first study the exact value function and derive

upper bounds to it. Then, we use these upper bounds to describe lower bounds to the

exact lifting function.
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7.5.1 Pure-integer knapsack set

First, we study the exact lifting function for facets of the convex hull of the restriction with

two integer variables and no continuous variable, denoted by K≤
2 (b), and introduced in

Section 7.2. Then, we use these upper bounds to describe lower bounds to the exact

lifting function. Finally, we describe super-additive lower bounds to the lifting function

using the families of two-slope repeating functions studied in Section 7.4.

The assumptions associated with the set are the same as enumerated on Page 146,

with one exception. We no longer assume (A.1); only assumptions (A.0) and (A.2)-(A.4).

Denoting the facets of conv(K≤
2 (b)) by

π1x1 + π2x2 ≤ π0, (7.2)

we make the following assumptions:

(A.5) We assume that π > 0.

(A.6) We assume that π1/a1 ≥ π2/a2; by reordering the variables, if necessary.

(A.7) We assume that π0 ≤ π1u1 + π2u2; else (7.2) is not a face of conv(K≤
2 (b)).

7.5.1.1 Value functions

The value function of (7.2) is defined as

vIP (d) = max{π1x1 + π2x2 : x1, x2 ∈ K≤
2 (d)}.

In all optimal solutions to vIP , xi = ui if ai = 0 or ui = 0 i = 1, 2, and xi = 0 if πi =

0, i = 1, 2. In these cases, vIP reduces to a problem with a single integral variable and

hence can be characterized in a closed form for all d. Hence, we are justified in making

assumptions (A.2) and (A.5).

From Section 7.2, we can evaluate the value function in polynomial time for a partic-

ular d. Kannan (1993) presents a polynomial-time (and polynomial-space) algorithm for

parametric integer programming in fixed dimension; however, the value function can not

be characterized using a closed form even for simple sets such as K≤
2 (b).

In the rest of Section 7.5.1, we define several upper bounds to the value function, use
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these to derive lower bounds for the exact lifting function of (7.2), and finally describe

super-additive lower bounds to these lifting functions.

To derive the first upper bound, we consider the linear programming relaxation of vIP ,

and denote the corresponding value function as vLP (d), i.e.,

vLP (d) = max{π1x1 + π2x2 : x1, x2 ∈ R+, a1x1 + a2x2 ≤ d, x ≤ u}.

Upper bound vLP can be stated explicitly as follows. Since π1

a1
≥ π2

a2
from assumption

(A.6), the optimal solution has x2 = 0 so long as d ≤ a1u1. For larger d, x1 is set to u1,

and x2 equals min{u2, (d− a1u1)/a2}. see Figure 7.4. Then, we see that

vLP (d) =























π1

a1
d if 0 ≤ d ≤ a1u1,

π1u1 + π2

a2
(d− a1u1) if a1u1 ≤ d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

We wish to obtain stronger upper bounds to vIP (d) that are still easy to characterize

in closed form. To develop these, we consider the partial linear programming relaxations

of vIP (d) where only one of the variables is allowed to be continuous. For ease of presen-

tation, we first make the following simplifying assumptions: a2u2 ≥ a1 and a1u1 ≥ π2
a1

π1
;

we will subsequently drop these assumptions.

To derive the second upper bound, consider the relaxation of vIP where x1 is con-

strained to be integral, but x2 is continuous. We denote the corresponding value function

as v1, i.e.,

v1(d) = max{π1x1 + π2x2 : x1 ∈ Z+, x2 ∈ R+, a1x1 + a2x2 ≤ d, x ≤ u}.

Since vLP is a relaxation of v1, we have vIP (d) ≤ v1(d) ≤ vLP (d). Since we have

only one integral variable, v1(d) is easy to characterize in closed form. For all d that are

integral multiples of a1 up to a1u1, the optimal solution has x2 = 0, since π1

a1
≥ π2

a2
, by

assumption (A.6).

For all values of d that are not integral multiples of a1, the remainder after setting

variable x1 to its largest possible integral value is allocated to the continuous variable

x2. For values of d greater than a1u1, the optimal solution is the same as for vLP , see
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Figure 7.4. Thus, for 0 ≤ k < u1,

v1(d) =























π1k + π2

a2
(d− ka1) if ka1 ≤ d < (k + 1)a1,

π1u1 + π2

a2
(d− a1u1) if a1u1 ≤ d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

To obtain the third upper bound to vIP , we consider the relaxation where x2 is con-

strained to be integral, but x1 is continuous. We denote this upper bound to the value

function as v2(d), i.e.,

v2(d) = max{π1x1 + π2x2 : x1 ∈ R+, x2 ∈ Z+, a1x1 + a2x2 ≤ d, x ≤ u}.

Since vLP is also a relaxation of v2, we have vIP (d) ≤ v2(d) ≤ vLP (d). Again, v2(d) is

easy to characterize in closed form. Since π1

a1
≥ π2

a2
from assumption (A.6), for all values

of d ≤ a1u1, we use only x1. For larger values of d, if d− a1u1 is an integral multiple of a2,

the optimal value has x2 = (d − a1u1)/a2, after setting x1 to u1. For values which do not

correspond to these integral multiples, consider d such that r(d−a1u1, a2) = a2−π2
a1

π1
. For

such d, there exist two optimal solutions: x1 = u1, x2 = `; and x1 = u1 −
π2

π1
, x2 = ` + 1.

Therefore, we can increase the objective value by reducing x1 and incrementing x2 if

r(d− a1u1, a2) ≥ a2 − π2
a1

π1
, see Figure 7.4. Thus, for 0 ≤ ` < u2,

v2(d) =



































π1

a1
d if 0 ≤ d ≤ a1u1

π1u1 + π2` if `a2 ≤ d− a1u1 ≤ (`+ 1)a2 − π2
a1

π1
,

π1

a1
(d− (`+ 1)a2) + π2(`+ 1) if (`+ 1)a2 − π2

a1

π1
≤ d− a1u1 ≤ (`+ 1)a2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

Figure 7.4 presents the form of the various upper bounds to the value functions for a

pure-integer knapsack set K≤
2 (b). The exact value function vIP can not be characterized

in closed form in polynomial time. Next, we present a numerical example that illustrates

these upper bounds; using the pure-integer set from Figure 7.2.

We consider K≤
2 (33) = {x1, x2 ∈ Z+ : 5x1 + 2x2 ≤ 33, x1 ≤ 6, x2 ≤ 12}, and the

facet-defining inequality 3x1 + x2 ≤ 19. Thus, we have π1 = 3, π2 = 1; a1 = 5, a2 = 2;

u1 = 6, u2 = 12; and b = 33. Since v1, v2 are different from vLP for values of d on either
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Figure 7.4: Value functions: Pure-integer knapsack set

vLP

v1

v2

π1

π1u1

π1u1 + π2

π1u1 + π2u2

v(d)

0
a1 a1u1

a1u1 + a2

a1u1 + a2u2

d

side of a1u1 = 30, we plot vLP , v1, v2, vIP for values of d from 25 to 34 in Figure 7.5.

Even though v1, v2 may not appear to be strong upper bounds to vIP , they are often the

strongest super-additive upper bounds, which is the property we desire.

Both v1(d) and v2(d) are upper bounds on vIP (d) for all d. Furthermore, v1(d) equals

vLP for d ≥ a1u1, and v2(d) equals vLP for d ≤ a1u1. This allows us to obtain stronger

upper bounds to vIP by considering

v(d) = min{v1(d), v2(d)}.

Thus, for 0 ≤ k < u1 and 0 ≤ ` < u2, we get

v(d) =



































π1k + π2

a2
(d− ka1) if ka1 ≤ d < (k + 1)a1,

π1u1 + π2` if `a2 ≤ d− a1u1 ≤ (`+ 1)a2 − π2
a1

π1
,

π1

a1
(d− (`+ 1)a2) + π2(`+ 1) if (`+ 1)a2 − π2

a1

π1
≤ d− a1u1 ≤ (`+ 1)a2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

In the preceding closed-form characterizations, v1 and v2 were simplified by the as-
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Figure 7.5: Value functions for pure-integer knapsack set: Numerical example

d

v(d)

15

30

18
vLP

v1

v2

32 34

19

20

vIP

25

max{3x1 + x2 : 5x1 + 2x2 ≤ 33, x1 ≤ 6, x2 ≤ 12}

sumptions a2u2 ≥ a1 and a1u1 ≥ π2
a1

π1
, respectively. To accurately model the general

case, we now drop these assumptions and modify v(d) to obtain v′(d) as follows; some of

the intervals may be empty in the following closed-form characterization. For k < u1 and

ka1 ≤ d < (k+1)a1, the remainder after setting x1 to the largest possible integral value is

allocated to x2 only if d−ka1 ≤ a2u2. For ` < u2 and (`+1)a2−π2
a1

π1
≤ d−a1u1 ≤ (`+1)a2,

we can increase v2(d) (and hence v(d)) by reducing x1 and incrementing x2 only if

r(d − a1u1, a2) ≥ a2 − a1u1. We define δ1 = min{a2u2, a1} and δ2 = −min{π2
a1

π1
, a1u1}.

Then, we have

v′(d) =















































π1k + π2

a2
(d− ka1) if ka1 ≤ d < ka1 + δ1,

π1k + π2u2 if ka1 + δ1 ≤ d < (k + 1)a1,

π1u1 + π2` if (`+ 1)a2 ≤ d− a1u1 < (`+ 1)a2 + δ2,

π1

a1
d− (`+ 1)(a2

π1

a1
π2) if (`+ 1)a2 + δ2 ≤ d− a1u1 ≤ (`+ 1)a2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.
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Upper bound v′(d) can be strengthened for d < a1 and d > a1u1 + a2(u2 − 1) since

vIP can be characterized in closed form for these values of d. When d < a1, x1 = 0 and

x2 is set to the largest feasible integral value. When d > a1u1 + a2(u2 − 1), any reduction

of d from a1u1 + a2u2 decrements the value of variable x1 from u1 to u1 − da1u1+a2u2−d
a1

e,

while variable x2 is still set to u2. However, this is done only if the reduction in optimal

solution is less than π2. Defining δ1 = min{a2u2, a1} and δ2 = −min{a1u1, a2}, for these

values of d, we have

vIP (d) =



































π2bd/a2c if 0 ≤ d < δ1,

π2u2 if δ1 ≤ d < a1,

π1u1 + π2(u2 − 1) if −a2 ≤ d− a1u1 − a2u2 < δ2,

π1u1 + π2u2 − min{π1d
a1u1+a2u2−d

a1
e, π2} if δ2 ≤ d− a1u1 − a2u2 ≤ 0.

Next, we use these value functions to develop several lower bounds for the exact lifting

function. Finally, we present super-additive lower bounds for the exact lifting function.

7.5.1.2 Lifting functions

We study the exact lifting function for (7.2), and denote it by ΦIP (d), i.e.,

ΦIP (d) = π0 − max{π1x1 + π2x2 : x1, x2 ∈ K≤
2 (b− d)},

and 0 ≤ d ≤ b. Defined in terms of the exact value function, we have

ΦIP (d) = π0 − vIP (b− d).

Unfortunately, we can not characterize vIP in closed form; therefore neither can we char-

acterize ΦIP . However, this relation between the lifting function and the value function

allows us to define various lower bounds for ΦIP using the upper bounds for the value

function. For instance, let ΦLP (d) = π0 − vLP (b − d), and define Φ1, Φ2, and Φ analo-

gously. By definition of K≤
2 (b), we have b ≥ a1u1. This allows us to easily characterize

ΦLP , Φ1, Φ2 and Φ in closed form as follows, for 0 ≤ k < u1, 0 ≤ ` < u2, and d ≥ 0

ΦLP (d) =











π0 − π1u1 −
π2

a2
(b− a1u1 − d) if 0 ≤ d ≤ b− a1u1,

π0 −
π1

a1
(b− d) if b− a1u1 ≤ d ≤ b.
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Φ1(d) =











π0 − π1u1 −
π2

a2
(b− a1u1 − d) if 0 ≤ d ≤ b− a1u1,

π0 −
π2

a2
(b− ka1 − d) − π1k if b− (k + 1)a1 < d ≤ b− ka1.

Φ2(d) =



































π0 − π1u1 − π2` if `a2 ≤ b− a1u1 − d ≤ (`+ 1)a2 −
a1

π1
π2,

π0 − (`+ 1)(π2 − a2
π1

a1
) − π1

a1
(b− d)

if − a1

π1
π2 ≤ b− a1u1 − d− (`+ 1)a2 ≤ 0,

π0 −
π1

a1
(b− d) if b− a1u1 ≤ d ≤ b.

Φ(d) =



































π0 − π1u1 − π2` if `a2 ≤ b− a1u1 − d ≤ (`+ 1)a2 −
a1

π1
π2,

π0 − (`+ 1)(π2 − a2
π1

a1
) − π1

a1
(b− d)

if − a1

π1
π2 ≤ b− a1u1 − d− (`+ 1)a2 ≤ 0,

π0 −
π2

a2
(b− ka1 − d) − π1k if b− (k + 1)a1 < d ≤ b− ka1.

Since (7.2) is a valid inequality for K≤
2 (b), ΦIP (d) ≥ 0, d ∈ [0, b]. Thus, we can

strengthen all these lower bounds whenever they are negative by increasing them to 0.

As in the case of v(d), Φ(d) can be strengthened to Φ′(d) if a2u2 < a1 or a1u1 < π2
a1

π1
,

and whenever ΦIP (d) can be characterized in closed form.

We separately consider the case where π2 = 0; it merits special attention for two

reasons. Firstly, this is a case where the exact lifting function can be completely char-

acterized in closed form; we next see why this is true. Secondly, as we shall see in

Section 7.5.1.3, this function is a special case of both families of super-additive functions

described in Section 7.4, and one of the super-additive lower bounds turns out to be ex-

actly the same as the well-known MIR inequality. When π2 = 0, we have π1 = 1 and

π0 = u1. In other words, the facet-defining inequality is the upper bound constraint

x1 ≤ u1. (7.3)

By restricting x1 to be integral, we obtain relaxation Φ1 of the lifting function for (7.3). For

all 0 ≤ k < u1, we have

Φ1(s) =











0 if 0 ≤ s ≤ b− a1u1,

u1 − k if b− (k + 1)a1 < s ≤ b− ka1.
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However, if π2 = 0, all optimal solutions to the exact lifting function ΦIP have x2 = 0.

Since Φ1 is obtained by relaxing integrality of x2, this relaxation is tight, and Φ1 = ΦIP .

Next, we present super-additive lower bounds for the lifting functions presented here.

These super-additive lifting functions are derived from the family of super-additive func-

tions described in Section 7.4, and can be used to obtain strong valid inequalities for the

pure-integer knapsack set K≤
n (b).

7.5.1.3 Super-additive lifting functions

Using the super-additive functions described in Section 7.4, we present sufficient condi-

tions for the super-additivity of ΦLP , Φ1, and Φ2, and present super-additive lower bounds

when they are not.

First, we consider ΦLP . Since (7.2) defines a facet of K≤
2 (b), we have vIP (b) = π0,

and thus ΦIP (0) = 0. Therefore, ΦLP (0) ≤ 0. Since ΦLP (d) is also piecewise-linear and

convex, from Proposition 7.24 ΦLP is super-additive on [0, b]. We know that ΦLP is a

weak lower bound to ΦIP ; we want to determine whether stronger lower bounds Φ1,Φ2

are super-additive, and if not, describe super-additive lower bounds for them.

Second, we consider Φ1, which belongs to the special case of Family 1 with ρ = 0;

see Section 7.4.3.1. It is the member parametrized by c = π0−π1u1, γ = π1, e = b−a1u1,

β = a1, δ = π2

a2
. Thus, we have c0 = π2

a2
(b−a1u1), and c1 = π2

a2
(b−a1(u1 − 1))−π1. (Since

Φ1(0) ≤ 0, we have π0 − π1u1 ≤ (b− a1u1)
π2

a2
.)

The following two results follow immediately from Corollaries 7.28 and 7.29.

Proposition 7.31 If b ≥ a1(u1 + 1), then Φ1(d) is super-additive.

Proposition 7.32 If b < a1(u1 + 1) and π0 − π1(u1 − 1) ≤ π2

a2
(b− a1(u1 − 1)), then Φ1(d)

is super-additive.

The converse of Proposition 7.32 need not be true since Family 1 is defined on [0,∞)

while Φ1(d) is defined only for d ∈ [0, b]; Φ1(d) may be super-additive even when the

condition is not satisfied. Regardless, the following functions (derived from f ′
1 and f ′2, see

Section 7.4.3.1) are lower bounds of Φ1(d) and are always super-additive.
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From f ′1, we obtain the super-additive lower bound φ1A(d) = (h1(d))
+, where

h1(d) =























π0 − π1u1 −
π2

a2
(b− a1u1 − d) if 0 ≤ d ≤ b− a1u1,

π0 − π1k −
π2

a2
(b− ka1 − d) if −a1 + ρ′ ≤ −b+ ka1 + d ≤ 0,

π0 − π1(k + 1) − α′(b− (k + 1)a1 − d) if 0 ≤ −b+ (k + 1)a1 + d ≤ ρ′,

for 0 ≤ k < u1, α′ = π1(u1+1)−π0

a1(u1+1)−b , and ρ′ = π1a2−π2a1

a2α′−π2
. From f ′2, we obtain the super-

additive lower bound φ1B(d) = (h2(d))
+ where, for 0 ≤ k < u1,

h2(d) =











π0 − π1u1 −
π2

a2
(b− a1u1 − d) if 0 ≤ d ≤ b− a1u1,

π0 − π1k −
π0−π1(u1−1)
b−a1(u1−1) (b− ka1 − d) if b− (k + 1)a1 < d ≤ b− ka1.

Third, we derive super-additive lower bounds for Φ2(d). We define k′ = max{k :

π0 − π1u1 − π2k > 0}; i.e., k′ = dπ0−π1u1

π2
e − 1. For d ≤ b − a1u1, Φ2(d) is an instance of

Family 2 parametrized by δ = 0, c = π0 − π1u1 − π2k
′, α = π1

a1
≥ π2

a2
, e = b− a1u1 − k′a2,

β = a2, γ = π2 and ρ = π2
π1

a1
, see Section 7.4.3.2. Since Φ2(0) ≤ 0, we have π0 − π1u1 −

π2(k
′ + 1) ≤ (b− a1u1 − (k′ + 1)a2)

π1

a1
. Since Φ2(d) is an upper bound to this instance for

d > b− a1u1, we can use all the results derived for Family 2.

Thus, from Section 7.4.3.2, we know that Φ2(d) is super-additive if π0−π1u1−π2(k
′ +

2) ≤ (b−a1u1−(k′+2)a2)
π1

a1
≥ π2

a2
. Again, the converse is not necessarily true. Neverthe-

less, the following functions, which are derived from g′1 and g′2 (see Section 7.4.3.2), are

super-additive lower bounds for Φ2. From g′1, we obtain the super-additive lower bound

φ2A(d) =











(h′1(d))
+ if 0 ≤ d ≤ b− a1u1,

Φ2(d) if d > b− a1u1,

where, for 0 ≤ ` < u2, α′ = π2(k′+2)+π1u1−π0

(k′+2)a2+a1u1−b and ρ′ = π2/α
′, we have

h′1(d) =























π0 − π1u1 − π2` if `a2 ≤ b− a1u1 − d ≤ (`+ 1)a2 − ρ′,

π0 − π1u1 − (`+ 1)(π2 − α′a2)−α′(b− d− a1u1)

if − ρ′ ≤ b− a1u1 − d− (`+ 1)a2 ≤ 0.

From g′2, we obtain the super-additive lower bound

φ2B(d) =











(h′2(d))
+ if 0 ≤ d ≤ b− a1u1,

Φ2(d) if d > b− a1u1,
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where, for 0 ≤ ` < u2, e′ = b − a1u1 − k′a2, c′ = π0 − π1u1 − π2k
′, and ρ′ = (π2e

′ −

c′a2)/(e
′ π1

a1
− c′), we have

h′2(d) =































































π0 − (k′ + 1)(π2 − a2
π1

a1
) − π1

a1
(b− d)

if d ≤ b− a1u1 − (k′ + 1)a2 + ρ′,

π0 − π1u1 − π2`−
c′

e′ (b− a1u1 −`a2 − d)

if `a2 ≤ b− a1u1 − d ≤ (`+ 1)a2 − ρ′,

π0 − (`+ 1)(π2 − a2
π1

a1
) − π1

a1
(b−d)

if − ρ′ ≤ b− a1u1 − d− (`+ 1)a2 ≤ 0.

Again, we present the special case where π2 = 0. As shown in Section 7.5.1.2, we

can completely characterize ΦIP in closed form since it is equal to Φ1. The following

results can easily be obtained by setting π2 = 0 in our analysis of Φ1. However, this case

merits special attention since one of the super-additive lower bounds developed is exactly

the well-known MIR inequality.

This function belongs to a special case of both Family 1 and Family 2 with ρ = 0

and δ = 0, see Sections 7.4.3.1 and 7.4.3.2. Instead of repeating the analysis from

Section 7.4, as we did for Φ1, we present the results.

ΦIP is super-additive if b ≥ a1(u1 + 1). We have proved the following.

Proposition 7.33 If x1 ≤ u1 defines a facet of conv(K≤
2 (b)), then the lifted inequality

defines a facet of conv(K≤
n (b)) if b ≥ a1(u1 + 1).

When this is not true, the function may still be super-additive. Nevertheless, the

following lower bounds are super-additive.

Let ρ′ = a1(u1 + 1) − b and α′ = 1/ρ′. From f ′1 and g′1, we obtain the super-additive

lower bound

φ1A(d) =























0 if 0 ≤ d ≤ b− a1u1,

u1 − k if −(k + 1)a1 + ρ′ ≤ d− b ≤ −ka1,

u1 − (k + 1) + α′(d− b+ (k + 1)a1) if 0 ≤ d− b− (k + 1)a1 ≤ ρ′,

for k ∈ [0, u1 − 1]. This is exactly the same as the MIR inequality if u1 = bb/a1c; obtained

by scaling the pure-integer knapsack that describes K≤
n (b) by a1.
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Let δ′ = b−a1(u1−1). For k ∈ [0, u1−1], from f ′2 and g′2, we obtain the super-additive

lower bound

φ1B(d) =











0 if 0 ≤ d ≤ b− a1u1,

u1 − k − δ′(b− ka1 − d) if b− (k + 1)a1 < d ≤ b− ka1.

7.5.1.4 Comparing super-additive lower bounds: A numerical example

Next, we present a small example to prove that the super-additive functions in Sec-

tion 7.5.1.3 are different from those presented in Agra and Constantino (2003). This

example illustrates that neither function dominates the other. Recall that in Agra and

Constantino (2003), the authors develop super-additive lifting functions from the group

relaxation of the exact lifting function.

We consider the facet-defining inequality 3x1 + x2 ≤ 12 of the set K≤
2 (23) = {x1, x2 ∈

Z+ : 5x1 + 2x2 ≤ 21, x1 ≤ 4, x2 ≤ 10}. This instance is actually obtained from the

example in Figure 7.2 after translating the axes by variable substitution to eliminate the

upper bound constraints; see Section 7.2.1.

For this example, we have π1 = 3, π2 = 1, π0 = 12; a1 = 5, a2 = 2; u1 = 4, u2 = 10;

and b = 21. Thus, we have b − a1u1 = 1 and π0 − π1u1 = 0. Therefore, Φ = Φ′
1, which

can be characterized in closed form as

Φ′
1(d) =











0 if 0 ≤ d ≤ 1,

3k + 1/2 + (d− 5k − 1)/2 if 5k + 1 < d ≤ 5(k + 1) + 1,

for k ∈ [0, u1 − 1]. Since b = 23 < 25 = a1(u1 + 1) and π0 − π1(u1 − 1) = 3 ≤ 4π2

a2
(b −

a1(u1 −1)), by Proposition 7.32, Φ′
1(d) is super-additive. In Agra and Constantino (2003),

the authors present a succession of super-additive lower bounds, of which the largest for

this example is ψ′
2, and is characterized in closed form, for k ∈ [0, u1 − 1], as

ψ′
2(d) =



































0 if 0 ≤ d ≤ 1,

3k + (d− 5k − 1) if 5k + 1 ≤ d ≤ 5k + 2,

3k + 1 + (d− 5k − 2)/2 if 5k + 2 ≤ d < 5(k + 1),

3(k + 1) if 5(k + 1) ≤ d ≤ 5(k + 1) + 1,
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Observe that Φ′
1(d) < ψ′

2(d) for 5(k + 1) < d < 5(k + 1) + 1, Φ′
1(d) > ψ′

2(d) for

5k + 1 ≤ d < 5k + 2, and Φ′
1(d) = ψ′

2(d) otherwise. Thus, these two super-additive lifting

functions do not dominate one another.

7.5.2 Mixed-integer knapsack set

Now, we study the exact lifting function for facets of the convex hull of the mixed-integer

set with two integer variables and one continuous variable, denoted by M≤
2 (b); introduced

in Section 7.3. Denoting facets of conv(M≤
2 (b)) by

π1x1 + π2x2 − y ≤ π0, (7.4)

we repeat assumptions (A.0) and (A.2)-(A.4) from Section 7.2 and assumptions (A.5)-

(A.6) from Section 7.5.1. We can also assume that π1, π2, π0 ∈ Z+, from Lemma 7.17.

7.5.2.1 Value functions

We define the exact value function

wIP (d) = max{π1x1 + π2x2 − y : x1, x2, y ∈M≤
2 (d)}.

In all optimal solutions to wIP , if ai = 0 or ui = 0, we have xi = ui, i = 1, 2; if π2 = 0,

we have x2 = 0. Thus, if any of these variables is zero, then the value function can be

characterized in closed form for all d since the problem reduces to a problem with one

integer variable and one continuous variable, see Atamtürk (2003b). Hence, we repeat

assumptions (A.2) and (A.5). We also assume that (A.7) is true, since (7.4) is not a face

of conv(M≤
2 ) if π0 > π1u1 + π2u2.

In the rest of Section 7.5.2, we define several upper bounds to the value function

and use them to derive lower bounds for the lifting function for (7.4). Whenever πi > ai,

xi = ui i = 1, 2 in all optimal solutions to wIP ; however we treat these cases explicitly, for

the sake of completeness.

Analogous to Section 7.5.1, we first consider the LP relaxation of the exact value

function, which we denote by wLP . Then, we describe stronger upper bounds for the
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exact lifting function (wIP ) by considering the following relaxations of wIP : x2 continuous

(w1), and x1 continuous (w2). Formally, these functions are defined as

wLP (d) = max{π1x1 + π2x2 − y : x1, x2, y ∈ R+, a1x1 + a2x2 − y ≤ d, x ≤ u},

w1(d) = max{π1x1 + π2x2 − y : x1 ∈ Z+, x2, y ∈ R+, a1x1 + a2x2 − y ≤ d, x ≤ u},

w2(d) = max{π1x1 + π2x2 − y : x1, y ∈ R+, x2 ∈ Z+, a1x1 + a2x2 − y ≤ d, x ≤ u}.

Again, since w1 and w2 are upper bounds on wIP , we can define a stronger upper bound

w(d) = min{w1(d), w2(d)}.

Each of these functions can be characterized in closed form. Depending on the values

of π1

a1
and π2

a2
, we treat the following two cases separately. For ease of exposition, we first

make two simplifying assumptions: a1u1 ≥ a1

π1
π2 and a2u2 ≥ a2

a1−π1

a2−π2
; we subsequently

drop these assumptions.

7.5.2.1.1 Case 1: π1

a1
≤ 1

The LP relaxation wLP is easy to characterize in closed form, see Figure 7.6. When

d < 0, y = −d to ensure feasibility. Since π2

a2
≤ π1

a1
≤ 1, both x1 and x2 are zero. When d

is non-negative, only x1 is used in the optimal solution while d ≤ a1u1 since π1

a1
≥ π2

a2
, by

assumption (A.6).

For larger values of d, we set x2 = d − a1u1 and x1 to its maximum value u1. For

d ≥ a1u1 + a2u2, both x1 and x2 are set to their upper bounds. Since π1

a1
≤ 1, y is never

used except to ensure feasibility if d < 0.

wLP (d) =



































d if d ≤ 0,

π1

a1
d if 0 ≤ d ≤ a1u1,

π1u1 + π2

a2
(d− a1u1) if a1u1 ≤ d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

Now, wLP can also be characterized in closed form. As before, when d < 0, the

optimal solution is obtained by setting y = −d and x = 0. When 0 ≤ d ≤ a1u1, for all

integral multiples of a1, the optimal solution sets x1 to the integral multiple.
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For intermediate values of d, the objective can be increased in two ways, after setting

x1 to the largest possible integral multiple of a1. First, we can let x2 = (d − a1x1)/a2.

Second, one can increment x1 to its next integral multiple by increasing y. This increases

the objective if r(d, a1) ≥ a1 − π1. For d such that r(d, a1) = a1 − a2
a1−π1

a2−π2
, let k =

bd/a1c. There exist two optimal solutions for such d: x1 = k, x2 = a1−π1

a2−π2
, y = 0; and

x1 = k + 1, x2 = 0, y = a1 − a2
a1−π1

a2−π2
. Considering the maximum of the two cases, we

obtain the value function for 0 ≤ d ≤ a1u1.

For d ≥ a1u1, the remainder after x1 has been set to its upper bound (u2) is allocated

to x2. When d ≥ a1u1 + a2u2, both x1 and x2 are set to their upper bounds u1 and u2,

respectively. Unless a marginal increase in y permits us to increment the integral x1 to its

next value, y is set to zero; see Figure 7.6. Thus, for 0 ≤ k < u1,

w1(d) =















































d if d ≤ 0,

π1k + π2

a2
(d− ka1) if ka1 ≤ d ≤ ka1 + a2

a1−π1

a2−π2
,

(k + 1)(π1 − a1) + d if ka1 + a2
a1−π1

a2−π2
≤ d ≤ (k + 1)a1,

π1u1 + π2

a2
(d− a1u1) if a1u1 ≤ d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

w2 is obtained by restricting x2 to integral values, while x1, y ∈ R+. Thus, it is a

relaxation of wIP . On the other hand, wLP is a relaxation of w2. As with both wLP and w1,

y = −d and x = 0 for all optimal solutions if d ≤ 0. When d is non-negative and smaller

than a1u1, the optimal solution is obtained by setting x1 to the maximum possible value

since 1 ≥ π1

a1
≥ π2

a2
.

When d ≥ a1u1, for all d such that d − a1u1 is an integral multiple of a2, we obtain

the optimal solution by first setting x1 to its maximum possible value (u1) and then x2 =

(d − a1u1)/a2. For intermediate values of d, the objective can be increased linearly by

incrementing x2 by one of the following methods: Decreasing x1 if r(d − a1u1, a2) >

a2 − π2
a1

π1
; or increasing y if r(d − a1u1, a2) > a2 − π2. Since a1

π1
≥ 1, the first dominates

the second. For d such that r(d− a1u1, a2) = a2 −π2
a1

π1
, there exist two optimal solutions:

x1 = u1, x2 = `, y = 0; and x1 = u1 −
π2

π1
, x2 = ` + 1, y = 0. Finally, for d ≥ a1u1 + a2u2,
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both x1 and x2 are set to their upper bounds, see Figure 7.6. Thus, for 0 ≤ ` < u2, we get

w2(d) =















































d if d ≤ 0,

π1

a1
d if 0 ≤ d ≤ a1u1,

π1u1 + π2` if `a2 ≤ d− a1u1 ≤ (`+ 1)a2 − π2
a1

π1
,

π1

a1
(d− (`+ 1)a2) + π2(`+ 1) if −π2

a1

π1
≤ d− a1u1 − (`+ 1)a2 ≤ 0,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

Figure 7.6: Value functions: Mixed-integer knapsack set

wLP

w1

w2

w(·)

π1u1 + π2u2

π1u1 + π2

π1u1

π1

a10 a1u1

a1u1 + a2

a1u1 + a2u2

d

Figure 7.6 presents the form of the various upper bounds to the value functions for a

generic mixed-integer knapsack set M≤
2 (b). Next, we present a numerical example that

illustrates these upper bounds; using the following mixed-integer set, obtained by adding

a continuous variable to the pure-integer set illustrated in Figure 7.2.

We consider M≤
2 (33) = {x1, x2 ∈ Z+ : 5x1 + 2x2 − y ≤ 33, x1 ≤ 6, x2 ≤ 12}, and the

facet 3x1+x2−y ≤ 19. Thus, we have π1 = 3, π2 = 1; a1 = 5, a2 = 2; u1 = 6, u2 = 12; and

b = 33. We calculated the exact lifting function for this facet. Since w1, w2 are different

from wLP for values of d on either side of a1u1 = 30, we plot wLP , w1, w2, wIP for values

of d from 25 to 34 in Figure 7.7. Even though w1, w2 may not appear to be strong upper

bounds to wIP , they are often the strongest super-additive upper bounds.
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Figure 7.7: Value functions for mixed-integer knapsack set: Numerical example

d

v(d)

15

30

18
wLP

w1

w2

32 34

19

20

wIP

25

max{3x1 + x2 − y : 5x1 + 2x2 − y ≤ 33, x1 ≤ 6, x2 ≤ 12}

Upper bound w1(d) equals wLP (d) for d ≥ a1u1, and upper bound w2(d) equals

wLP (d) for d ≤ a1u1. Since w1 and w2 are both upper bounds on wIP , we can stronger

upper bounds by considering their maximum. For 0 ≤ k < u1 and 0 ≤ ` < u2, we get

w(d) =































































d if d ≤ 0,

π1k + π2

a2
(d− ka1) if ka1 ≤ d ≤ ka1 + a2

a1−π1

a2−π2
,

(k + 1)(π1 − a1) + d if ka1 + a2
a1−π1

a2−π2
≤ d ≤ (k + 1)a1,

π1u1 + π2` if `a2 ≤ d− a1u1 ≤ (`+ 1)a2 − π2
a1

π1
,

π1

a1
(d− (`+ 1)a2) + π2(`+ 1) if −π2

a1

π1
≤ d− a1u1 − (`+ 1)a2 ≤ 0,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

In the preceding closed-form characterization, w1 and w2 were simplified by the as-

sumptions a1u1 ≥ a1

π1
π2 and a2u2 ≥ a2

a1−π1

a2−π2
, respectively. To accurately model the gen-

eral case, we now drop these assumptions and strengthen w(d) to w′(d), for 0 ≤ k < u1

and 0 ≤ ` < u2. For ka1 ≤ d < ka1 + a2
a1−π1

a2−π2
, the remainder after setting x1 = k is
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allocated to x2 only if d − ka1 ≤ a2u2. For (` + 1)a2 − π2
a1

π1
≤ d − a1u1 ≤ (` + 1)a2,

we can increase w2(d) (and hence w(d)) by incrementing x2 and reducing x1 only if

r(d−a1u1, a2) ≥ a2−a1u1. If this is not the case, then x2 can be incremented by increas-

ing y. For δ1 = max{a2
a1−π1

a2−π2
, π2u2 + a1 − π1}, δ2 = min{−π2

a1

π1
, (π1 − a1)u1 − π2}, and

δ3 = −min{π2
a1

π1
, a1u1}, we have

w′(d) =











































































d if d ≤ 0,

kπ1 + π2

a2
min{d− ka1, a2u2} if 0 ≤ d− ka1 ≤ δ1,

(k + 1)(π1 − a1) + d if δ1 ≤ d− ka1 ≤ a1,

π1u1 + π2` if 0 ≤ d− a1u1 − `a2 ≤ a2 + δ2,

(d− (`+ 1)a2) + π2(`+ 1) if δ2 ≤ d− a1u1 − (`+ 1)a2 ≤ δ3,

π1

a1
(d− (`+ 1)a2) + π2(`+ 1) if δ3 ≤ d− a1u1 − (`+ 1)a2 ≤ 0,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

We can strengthen w(d) for all d where wIP (d) can be characterized in closed form.

When d ≤ a2
a1−π1

a2−π2
, we set x1 = 0 and x2 to the largest feasible integral value. Fur-

thermore, we can increment x2 by increasing y if this increases the objective. Thus, for

0 ≤ `′ < u2, we have

wIP (d) =























max{π2`
′, π1 − a1 + d} if `′a2 ≤ d ≤ (`′ + 1)a2 − π2,

max{(`′ + 1)(π2 − a2) + d, π1 − a1 + d} if − π2 ≤ d− (`′ + 1)a2 ≤ 0,

max{π2u2, π1 − a1 + d} if a2u2 ≤ d ≤ a1−π1

a2−π2
.

When d ≥ a1u1 + a2u2 − π2
a1

π1
, any reduction of d from a1u1 + a2u2 decrements the

value of x1 from u1. However, x1 can be incremented by increasing y if this improves the

objective. Defining δ = a1u1 + a2u2, for 0 ≤ k′ < u1, we have

wIP (d) =























π1u1 + π2u2 − min{π2, π1k
′ + δ − d− k′a1} if 0 ≤ δ − d− k′a1 ≤ π1,

π1u1 + π2u2 − min{π2, π1(k
′ + 1)} if π1 ≤ δ − d− k′a1 ≤ a1,

π1u1 + π2u2 − min{π2, π1u1 + a2u2 − d} if a1u1 ≤ δ − d ≤ π2
a1

π1
.

7.5.2.1.2 Case 2: π1

a1
> 1

For π1

a1
> 1, we first consider the sub-case π2

a2
≤ 1. Again, wLP is very easy to characterize
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in closed form. Since π1

a1
> 1, x1 is set to its maximum value (u1) in all optimal solutions

by increasing y if d ≤ a1u1. For larger values of d, x1 continues to be u1, while the

remainder is allocated to x2. Since π2

a2
≤ 1, y is not used to increase the value of x2.

When d ≥ a1u1 + a2u2, both x1 and x2 are set to their maximum values u1 and u2,

respectively. We get

wLP (d) =























u1(π1 − a1) + d if d ≤ a1u1,

π1u1 + π2

a2
(d− a1u1) if a1u1 ≤ d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

Now, wLP is obtained as the relaxation of w1 where x1 is continuous. However, since

x1 = u1 in the optimal solution of vLP for all d, restricting x1 to be integral does not change

the value function in any way. Thus, w1(d) = wLP (d) for all d.

w1(d) =























u1(π1 − a1) + d if d ≤ a1u1,

π1u1 + π2

a2
(d− a1u1) if a1u1 ≤ d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

We obtain w2 by restricting only x2 to be integral; thus x1 ∈ R+. Again, since π1

a1
> 1,

x1 is set to its upper bound u1 in all optimal solutions. When d ≤ a1u1, this is achieved

by increasing y. When d ≥ a1u1, x1 is first set to its upper bound (u1). For all d such

that the remainder d − a1u1 is an integral multiple of a2, the optimal solution is obtained

by setting x2 to this integral multiple. For intermediate values of d, consider d such that

r(d − a1u1, a2) = a2 − π2. For such d, there exist two optimal solutions: x1 = u1, x2 =

`, y = 0; and x1 = u1, x2 = `+ 1, y = π2. Therefore, the objective value can be improved

if r(d− a1u1, a2) ≥ a2 − π2 by increasing y to increment x2 to the next integral value. For

d ≥ a1u1, both x1 and x2 are set at their upper bounds u1 and u2, respectively. Thus, for

0 ≤ ` < u2, we get

w2(d) =



































u1(π1 − a1) + d if d ≤ a1u1,

π1u1 + π2` if `a2 ≤ d− a1u1 ≤ (`+ 1)a2 − π2,

u1(π1 − a1) + (`+ 1)(π2 − a2) + d if −π2 ≤ d− a1u1 − (`+ 1)a2 ≤ 0,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

183



www.manaraa.com

Both w1 and w2 are upper bounds on wIP ; we get a stronger upper bound by consid-

ering their minimum w. In this case, w2(d) ≥ w1(d) = wLP (d), ∀d, and thus w(d) = w2(d).

w(d) =



































u1(π1 − a1) + d if d ≤ a1u1,

π1u1 + π2` if `a2 ≤ d− a1u1 ≤ (`+ 1)a2 − π2,

u1(π1 − a1) + (`+ 1)(π2 − a2) + d if −π2 ≤ d− a1u1 − (`+ 1)a2 ≤ 0,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

In the optimal solution to w2(d), for all d, we have x1 set to an integral value (its upper

bound). Thus, restricting x1 also to be integral does not change the value function for any

d. This implies that wIP can be characterized in closed form if π1

a1
> 1 ≥ π2

a2
, and is equal

to w2(d).

Second, we consider the sub-case where π2

a2
> 1. This is the easiest to characterize

in closed form since both x1 and x2 are set to their upper bounds in all optimal solutions,

irrespective of whether x1 or x2 is forced to integral. When d ≤ a1u1 + a2u2, this is done

by increasing y to ensure feasibility. When d ≥ a1u1 + a2u2, y is set to zero. We have

wLP (d) =











u1(π1 − a1) + u2(π2 − a2) + d if d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

As mentioned earlier, restricting x1 to be integral does not change the value function

since x1 is set to u1 for all values of d. Thus, we have w1(d) = wLP (d).

w1(d) =











u1(π1 − a1) + u2(π2 − a2) + d if d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

Similarly, restricting x2 to take only integral values does not reduce the value function.

We have x2 = u2 in all optimal solutions, and thus w2(d) = wLP (d).

w2(d) =











u1(π1 − a1) + u2(π2 − a2) + d if d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.

We’ve seen that w2(d) = w1(d) = wLP (d), and thus we have w(d) = wLP (d).

w(d) =











u1(π1 − a1) + u2(π2 − a2) + d if d ≤ a1u1 + a2u2,

π1u1 + π2u2 if a1u1 + a2u2 ≤ d.
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Since both x1 = u1 and x2 = u2 in the optimal solutions to vLP (d) for all d, restricting

both x1 and x2 to be integral also does not change the value function. Thus, in this case

wIP can be characterized in closed form and is equal to wLP . Next, we use these value

functions to develop several lower bounds for the exact lifting function for (7.4).

7.5.2.2 Lifting functions

We denote the exact lifting function for (7.4) by ΨIP (d). For d ≥ 0, we have

ΨIP (d) = π0 − max{π1x1 + π2x2 − y : x1, x2, y ∈M≤
2 (b− d)}.

Again, the exact lifting function can be defined in terms of the exact value function as

ΨIP (d) = π0 − wIP (b− d).

We first study several lower bounds for ΨIP ; Ψ1, Ψ2 and Ψ are defined similarly using

the various upper bounds for wIP . Again, depending on the values of π1

a1
and π2

a2
, we treat

the following cases separately. The following closed-form characterizations are defined

for d ≥ 0 and b ≥ a1u1. When b < a1u1, the analysis is similar, and is omitted here.

7.5.2.2.1 Case 1: π1

a1
≤ 1

We characterize in closed form the case where π1

a1
≤ 1, starting with the LP relaxation

ΨLP , and then Ψ1,Ψ2, and Ψ. Deriving these lifting functions from the corresponding

value functions, for 0 ≤ k < u1, 0 ≤ ` < u2, d ≥ 0, and b̂ = b− a1u1, we have

ΨLP (d) =























π0 − π1u1 −
π2

a2
(b− a1u1 − d) if 0 ≤ d ≤ (b− a1u1)

+,

π0 −
π1

a1
(b− d) if b− a1u1 ≤ d ≤ b,

π0 + d− b if b ≤ d.

Ψ1(d) =



































π0 − π1u1 −
π2

a2
(b− a1u1 − d) if 0 ≤ d ≤ (b− a1u1)

+,

π0 − π1k −
π2

a2
(b− ka1 − d) if ka1 ≤ b− d ≤ ka1 + a2

a1−π1

a2−π2
,

π0 − (k + 1)(π1 − a1) + d− b if ka1 + a2
a1−π1

a2−π2
≤ b− d ≤ (k + 1)a1,

π0 + d− b if b ≤ d.
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Ψ2(d) =



































π0 − π1u1 − π2` if `a2 ≤ b̂− d ≤ (`+ 1)a2 − π2
a1

π1
,

π0 + π1

a1
(d− b) − (`+ 1)(π2 − a2

π1

a1
) if −π2

a1

π1
≤ b̂− d− (`+ 1)a2 ≤ 0,

π0 −
π1

a1
(b− d) if b− a1u1 ≤ d ≤ b,

π0 + d− b if b ≤ d.

Ψ(d) =















































π0 − π1u1 − π2` if `a2 ≤ b̂− d ≤ (`+ 1)a2 − π2
a1

π1
,

π0 + π1

a1
(d− b) − (`+ 1)(π2 − a2

π1

a1
) if −π2

a1

π1
≤ b̂− d− (`+ 1)a2 ≤ 0,

π0 − π1k −
π2

a2
(b− ka1 − d) if ka1 ≤ b− d ≤ ka1 + a2

a1−π1

a2−π2
,

π0 − (k + 1)(π1 − a1) + d− b if ka1 + a2
a1−π1

a2−π2
≤ b− d ≤ (k + 1)a1,

π0 + d− b if b ≤ d.

Since (7.4) is a valid inequality for M≤
2 (b), we have that ΨIP = 0. Thus, ΨIP (d) ≥

0, ∀d ≥ 0; therefore all the lower bounds can be strengthened by increasing them to 0

wherever they are negative. Furthermore, as for Φ(d), Ψ(d) can be strengthened to Ψ′(d)

whenever a1u1 <
a1

π1
π2 or a2u2 < a2

a1−π1

a2−π2
, and wherever ΨIP can be characterized in

closed form.

The special case of π2 = 0 studied and characterized in closed form in Atamtürk

(2003b) deserves special mention for three reasons. Firstly, the inequality when π2 = 0

corresponds to the MIR inequality for the restriction M≤
1 (b) with all variables other than

x2 and y set to 0. Secondly, the exact lifting function for this case can be characterized

in closed form even though π1

a1
≤ 1. Finally, this exact lifting function is super-additive.

Defining ηb = db/a1e and rb = r(b, a1), we have π1 = a1 − rb and π0 = b − ηbrb. For

0 ≤ k < u1, we have

ΨIP (d) =



































0 if 0 ≤ d ≤ (b− a1u1)
+,

b− ηbrb − k(a1 − rb) if ka1 ≤ b− d ≤ (k + 1)a1 − π1,

−ηbrb + (k + 1)rb + d if (k + 1)a1 − π1 ≤ b− d ≤ (k + 1)a1,

d− ηbrb if d ≥ b.

7.5.2.2.2 Case 2: π1

a1
> 1

As before, we first consider sub-case π2

a2
≤ 1. When π1

a1
> 1, x1 = u1 in all optimal solu-
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tions to ΨIP . Therefore, relaxing integrality on x1 while calculating Ψ2 does not improve

the objective. At the same time, constraining x1 to be integral does not worsen the objec-

tive when compared with the LP relaxation. Thus, we have ΨLP = Ψ1 and Ψ2 = Ψ = ΨIP .

The exact lifting function is therefore characterized in closed form in this case.

ΨLP (d) = Ψ1(d) =











π0 − π1u1 −
π2

a2
(b− a1u1 − d) if 0 ≤ d ≤ (b− a1u1)

+,

π0 − u1(π1 − a1) + d− b if d ≥ b− a1u1.

For 0 ≤ ` < u2, we have

ΨIP (d) =



































π0 − π1u1 − π2` if 0 ≤ b− d− a1u1 − `a2 ≤ a2 − π2,

π0 − u1(π1 − a1) − (`+ 1)(π2 − a2) + d− b

if − π2 ≤ b− d− a1u1 − (`+ 1)a2 ≤ 0,

π0 − u1(π1 − a1) + d− b if b− a1u1 ≤ d.

As before, we can strengthen Ψ(·)(d) to (Ψ(·)(d))
+.

Now, we consider the sub-case π2

a2
> 1. From Section 7.5.2.1.2, wLP (d) = wIP (d),

and therefore ΨIP (d) can be characterized in closed form as follows.

ΨIP (d) =











π0 − π1u1 − π2u2 if 0 ≤ d ≤ b− a1u1 − a2u2,

π0 − (π1 − a1)u1 − (π2 − a2)u2 − b+ d if d ≥ b− a1u1 − a2u2.

As before, we can strengthen ΨIP (d) to (ΨIP (d))+ for all d.

Next, we describe the conditions under which these functions are super-additive, and

construct super-additive lower bounds when these conditions fail.

7.5.2.3 Super-additive lifting functions

7.5.2.3.1 Case 1: π1

a1
≤ 1

For the case where π1

a1
≤ 1, we start with the LP relaxation of the exact lifting function,

ΨLP . Since (7.2) defines a facet of M≤
2 (b), we have wIP (b) = π0, and thus ΨIP (0) = 0.

Therefore, ΨLP (0) ≤ 0. From Proposition 7.24, ΨLP is super-additive since ΨLP (0) is

also convex. However ΨLP is often a weak relaxation of the exact lifting function, and

thus we develop super-additive lower bounds for the partial LP relaxations Ψ1 and Ψ2.
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We consider Ψ1 first. Since the slope of Ψ1(d) is unknown when Ψ1(d) = 0, the

function may belong to either Family 1 or Family 2 for d ≤ b, see Section 7.4. We define

k′ = bπ0/π1c if b− a1u1 < 0, and u1 otherwise.

When Ψ′
1(d) = π2

a2
at Ψ1(d) = 0, then the function is an instance of Family 1 for d ≤ b,

parametrized by α = 1, β = a1, γ = π1, δ = π2

a2
, e = b − k′a1, c = π0 − π1k

′ and

ρ = (a2π1 − a1π2)/(a2 − π2), see Section 7.4.1. Since Ψ1(d) ≤ 0, we have π0 − π1k ≤

(b−k′a1)
π2

a2
. Also, since Ψ1(d) is an upper bound to this instance of Family 1 for d ≥ b, we

can use all the results for this instance. Thus, Ψ1 is super-additive if b−k′a1 ≥ a2
a1−π1

a2−π2
or

π0 − π1(k
′ − 1) ≤ (b− (k′ − 1)a1)

π2

a2
or π0 − π1(k

′ + 1) ≤ b− (k′ + 1)a1. The converse may

not be true; nevertheless the following functions derived from f1 and f2 are super-additive

lower bounds for Ψ1.

From f1, we get

ψ1A(d) =











(h1(d))
+ if 0 ≤ d ≤ b,

Ψ1(d) if d > b,

where, for 0 ≤ k < k′, α′ = π1(k′+1)−π0

k′+1)a1−b , and ρ′ = a2π1−a1π2

a2α′−π2
, we have

h1(d) =











π0 − π1k −
π2

a2
(b− ka1 − d) if 0 ≤ b− ka1 − d ≤ a1 − ρ′,

π0 − π1(k + 1) + α′(d− b+ (k + 1)a1) if a1 − ρ ≤ b− ka1 − d ≤ a1.

From f2, we obtain

ψ1B(d) =























(Ψ1(d))
+ if d ≤ b− k′a1,

h2(d) if b− k′a1 − d ≤ b,

Ψ1(d) if d ≥ b,

where, for 0 ≤ k < k′, δ′ = π0−π1(k′−1)
b−(k′−1)a1

, and ρ′ = (b−k′a1)δ′−(π0−π1k′)
1−δ′ , we have

h2(d) =











π0 − π1k − δ′(b− ka1 − d) if ka1 ≤ b− d ≤ (k + 1)a1 − ρ′,

π0 − π1(k + 1) + (d− b+ (k + 1)a1) if (k + 1)a1 − ρ ≤ b− d ≤ (k + 1)a1.

When Ψ′
1(d) = 1 at Ψ1(d) = 0, then the function is an instance of Family 2 for d ≤ b,

parametrized by α = 1, β = a1, γ = π1, δ = π2

a2
, e = b − k′a1, c = π0 − π1k

′ and

ρ = (a2π1−a1π2)/(a2−π2), see Section 7.4.2. Since Ψ1(d) ≤ 0, we have π0−π1(k+1) ≤
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b− (k′ + 1)a1. Also, since Ψ1(d) is an upper bound to this instance of Family 2 for d ≥ b,

we can use all the results derived for this instance.

Thus, Ψ1 is super-additive if π0−π1k
′ ≤ (b−k′a1)

π2

a2
or π0−π1(k

′ +2) ≤ b− (k′ +2)a1.

As before, the converse may not be true. Nevertheless, the following functions derived

from g1 and g2 (see Section 7.4.2) are super-additive lower bounds for Ψ1.

From g1, we get

ψ1A(d) =











(h1(d))
+ if 0 ≤ d ≤ b,

Ψ1(d) if d > b,

where, for 0 ≤ k < k′, α′ = π1(k′+2)−π0

k′+2)a1−b , and ρ′ = a2π1−a1π2

a2α′−π2
, we have

h1(d) =











π0 − π1k −
π2

a2
(b− ka1 − d) if 0 ≤ b− ka1 − d ≤ a1 − ρ′,

π0 − π1(k + 1) + α′(d− b+ (k + 1)a1) if a1 − ρ ≤ b− ka1 − d ≤ a1.

From g2, we obtain

ψ1B(d) =











(h2(d))
+ if 0 ≤ d ≤ b,

Ψ1(d) if d > b,

where, for 0 ≤ k < k1, δ′ = π0−π1k′

b−k′a1
, and ρ′ = π1−δ′a1

1−δ′ , we have

h2(d) =











π0 − π1k − δ′(b− ka1 − d) if 0 ≤ b− ka1d ≤ a1 − ρ′,

π0 − π1(k + 1) + (d− b+ (k + 1)a1) if a1 − ρ ≤ b− ka1 − d ≤ a1.

Next, we develop super-additive lower bounds for Ψ2. If b ≤ a1u1, then Ψ2 = ΨLP ,

and is therefore super-additive. Otherwise, Ψ2 is exactly the same as Φ2, which is a lower

bound to the exact lifting function for the pure-integer case, see Section 7.5.1.2. Thus,

we can use the super-additive lower bounds developed in Section 7.5.1.3.

Again, we mention that for the special case of π2 = 0, we can characterize in closed

form the exact lifting function; see Section 7.5.2.2. Furthermore, the exact lifting function

is super-additive (Atamtürk 2003b).

7.5.2.3.2 Case 2: π1

a1
> 1

For the case where π2

a2
≤ 1, ΨIP can be characterized in closed form, see Sec-
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tion 7.5.2.2.2.

When b ≤ a1u1, ΨIP is linear. Since ΨIP (0) ≤ 0, ΨIP is super-additive. Let k′ =

d(π0 − π1u1)/π2e − 1; When b > a1u1, for d ≤ b − a1u1, the function is an instance

of the special case of Family 2 with δ = 0, parametrized by α = 1, β = a2, γ = π2,

e = b− a1u1 − k′a2, c = π0 − π1u1 − π2k
′, ρ = π2, and δ = 0; see Section 7.4.3.2. Since

ΨIP ≤ 0, we have π0 −
π1

a1
≥ π2

a2
−π2(k

′ + 1) ≤ b− a1u1 − (k′ + 1)a2. Furthermore, ΨIP (d)

is an upper bound to this instance if d > b− a1u1, and we can use all the results derived

for the special case of Family 2.

Thus, ΨIP is super-additive if π0 − π1u1 − (k′ + 2)π2 ≤ b− a1u1 − (k′ + 2)a2. We have

proved the following.

Proposition 7.34 Let k′ = d(π0 − π1u1)/π2e− 1. If π1

a1
> 1 ≥ π2

a2
, then the lifted inequality

is facet-defining for conv(M≤
n (b)) if π0 − π1u1 − (k′ + 2)π2 ≤ b− a1u1 − (k′ + 2)a2.

However, the converse is not necessarily true. Regardless, the following lower bounds

derived from g1 and g2 are super-additive.

From g1, we obtain the super-additive lower bound

ψ2A(d) =











(h1(d))
+ if 0 ≤ d ≤ b− a1u1,

ΨIP (d) if d > b− a1u1,

where, for 0 ≤ ` < k′, α′ = π2(k′+2)+π1u1−π0

(k′+2)a2+a1u1−b and ρ′ = π2/α
′, we have

h1(d) =























π0 − π1u1 − π2` if 0 ≤ b− d− a1u1 − `a2 ≤ a2 − ρ′,

π0 − u1π1 − π2(`+ 1)+α′(d− b+ (`+ 1)a2 − a1u1)

if − ρ′ ≤ b− d− a1u1 − (`+ 1)a2 ≤ 0.

From g2, we obtain the super-additive lower bound

ψ2B(d) =























(ΨIP (d))+ if 0 ≤ d ≤ b− a1u1 − (k′ + 1)a2,

(h2(d))
+ if b− a1u1 − (k′ + 1)a2 ≤ d ≤ b− a1u1,

ΨIP (d) if d > b− a1u1,
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where, for 0 ≤ ` < k′, δ′ = π0−π1u1−π2k′

b−a1u1−k′a2
, and ρ′ = π2−δ′a2

1−δ′ , we have

h2(d) =



































π0 − π1u1 − π2`− δ′(b− a1u1 − `a2−d)

if 0 ≤ b− d− a1u1 − `a2 ≤ a2 − π2,

π0 − u1(π1 − a1) − (`+ 1)(π2 − a2)+d− b

if − π2 ≤ b− d− a1u1 − (`+ 1)a2 ≤ 0.

When π2

a2
> 1, from Section 7.5.2.2.2, ΨIP can be characterized in closed form. Since

ΨIP (0) ≤ 0 and ΨIP is convex, it is super-additive; from Proposition 7.24. We have

proved the following.

Proposition 7.35 If π1

a1
> π2

a2
> 1, then the lifted inequality is facet-defining for

conv(M≤
n (b)).

7.6 Computational experiments

Finally, we present computational results that illustrate the effectiveness of our lifted in-

equalities in a branch-and-cut framework to solve linear optimization problems over pure-

integer knapsack sets. We perform these experiments on pure-integer knapsacks. We

choose the data from two sources.

The first set of instances (twenty in total) are from Aardal and Lenstra (2002); we refer

to them as Dataset 1. We modify the prob1-prob20 problem instances as follows. We

choose only the first five variables from each set. We set the coefficient in the objective

function ci equal to ai − 1, ∀i = [1, 5]. They are pure-integer knapsacks with five integer

variables, but are still very difficult to solve.

We choose the second set of instances randomly with the same three parameter sets

as in Agra and Constantino (2003); four from each set, giving us twelve in total. We

choose the parameters for these sets randomly from the intervals described in Table 7.1.

They are instances with one hundred integer variables; we refer to them as Dataset 2.

We implement all our computations using CPLEX 9.0 Callable Library on a 2.4GhZ

machine with 1GB RAM, and running Linux. We set the maximum number of branch-

and-bound nodes to 100, 000, and set the time limit to 300 CPU seconds. To ensure
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Table 7.1: Parameters of instances in Dataset 2

set ai ci b

A [1700,2000] [1700,2000] [200000,300000]
B [700,10000] [700,10000] [2000000,5000000]
C [100,200] [50,60] [2000,5000]

consistency of results, we disable the CPLEX heuristic.

We add the lifted inequalities only at root node; while we add CPLEX cuts aggressively

throughout the tree. To obtain the two-integer restriction, we consider all pairs of variables

with nonzero LP solution. We use super-additive lower bounds to the lifting function (see

Section 7.5.1.3) for the facets of the two-variable restriction to generate valid inequalities,

and add them if they violate the current fractional solution.

First, we test our lifted inequalities in a branch-and-cut algorithm on DataSet 1. In

Table 7.2, we report the improvement at the root node (root improvement), the number of

branch and bound nodes (b&b nodes), and the solution times (time) or gap at termina-

tion (endgap), under headings (1) and (2) for CPLEX default and our lifted inequalities,

respectively. We also report the number of added (cuts added).

We see in Table 7.2 that in most of the instances, we outperform CPLEX default in

terms of the improvement at the root node. In fact, our cuts reduce the integrality gap

at the root node by 7.0% on average, as compared with 3.5% for CPLEX default. Not

surprisingly, this manifests itself in the number of branch-and-bound nodes to obtain the

optimal solution. Interestingly, these problems are hard to solve, in spite of being very

small; five variables and one constraint. Even though it does not take too much time to

solve them, the number of branch-and-bound nodes is quite high.

Observe that CPLEX usually finds only two or three violated inequalities, even in its

most aggressive setting, which we report here. On the other hand, we add many more

of our lifted inequalities, 59 on average. Consequently, a much larger LP is solved at

each node of the tree, resulting in the larger solution times (4.4 seconds) as compared

with 2.5 seconds for CPLEX default even though the number of nodes is lesser. We need

to perform more detailed computational experiments which maintain an active cut pool
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Table 7.2: Computations on pure-integer knapsack: Dataset 1

instance
root improvement b&b nodes cuts added time (endgap)

(1) (2) (1) (2) (1) (2) (1) (2)

1 4.1 33 96303 72292 33 3 3.2 4.1
2 2.9 9.3 9943 6158 60 2 0.4 0.5
3 2.4 2.4 609420 544466 20 3 22 24
4 4.2 4.2 346906 348864 128 3 11 21
5 0.5 1.6 ( - ) ( - ) 56 3 (0.0) (0.0)
6 1.6 2.1 23475 300122 80 3 0.8 19
7 1.0 3.2 ( - ) ( - ) 102 3 (0.0) (0.0)
8 5.6 6.7 72234 50657 68 3 2.6 3.0
9 14 8.1 5728 3950 20 3 0.2 0.3

10 0.0 0.1 ( - ) ( - ) 68 3 (0.0) (0.0)
11 0.9 14 3701 2882 53 3 0.2 0.3
12 0.1 0.1 3484 2298 72 3 0.1 0.3
13 4.2 0.8 3265 3511 30 3 0.1 0.3
14 0.8 7.1 1897 1458 82 3 0.1 0.2
15 7.3 7.4 3567 3876 42 3 0.1 0.3
16 0.9 4.0 14487 14007 41 3 0.5 0.8
17 11 19 1051 770 83 3 0.1 0.1
18 3.2 7.8 7107 7051 91 3 0.3 0.6
19 3.9 4.6 6658 6362 36 3 0.2 0.4
20 2.0 3.5 9477 8724 16 3 0.3 0.5

Average 3.5 7 71688 81026 59 3 2.5 4.4

(1) CPLEX default, (2) lifted inequalities.

depending on the strength of the inequality being added; this is a topic of future study.

Next, we test the instances in Dataset 2. In Table 7.3, we report the improvement at

the root node (root improvement), the number of branch-and-bound nodes (b&b nodes),

and the number of cuts added, for CPLEX default (1) and our lifted inequalities (2). We

obtain the instances in Dataset 2 by a random sampling within a parameter space; we

present computations for four instances (instance) for each parameter set (data set).

We see in Table 7.3 that these instances are quite easy to solve, even though they

have many more variables (100) as compared with Dataset 1. In fact, CPLEX default

obtains the optimal solution at the root node for five of the twelve instances, and does not

need more than 16 nodes for any instance. This illustrates that hard instances not easily

obtained by random sampling, and it comes as no surprise that the hard instances in

Dataset 1 are highly contrived. Even for these easy instances in Dataset 2, the inequal-
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Table 7.3: Computations on pure-integer knapsack: Dataset 2

data set instance
root improvement b&b nodes cuts added

(1) (2) (1) (2) (1) (2)

A 1 96 97 5 2 1 811
A 2 0 100 16 0 1 3183
A 3 94 94 3 10 1 2984
A 4 100 100 0 0 1 1746
B 1 99 100 6 9 2 1305
B 2 0 100 11 0 1 3654
B 3 0 100 9 0 0 3524
B 4 100 100 0 0 1 1364
C 1 0 100 15 0 1 1375
C 2 100 100 0 0 1 966
C 3 100 100 0 0 2 954
C 4 87 97 1 2 1 709

(1) CPLEX default, (2) lifted inequalities.

ities significantly outperform CPLEX; we obtain the optimal solution at the root node for

nine out of the 12 instances. Even in the other three instance, we close at least 94% of

the gap at the root node; while CPLEX default does not add any cuts for four instances.

7.7 Conclusions

In this chapter, we studied the polyhedra of mixed-integer knapsacks with two integer

variables and at most one continuous variable. We presented polynomial algorithms to

enumerate all facets of these sets. We then analyzed the exact lifting function for these

facets, and characterized in closed form super-additive lower bounds for them that can be

computed trivially. These super-additive lower bounds were developed by studying two

classes of super-additive functions that generalize all partial LP relaxations of the exact

lifting function.

Using sequence independent lifting, we generated valid inequalities for the mixed-

integer knapsack set with at most one continuous variable. We presented sufficient con-

ditions under which these lifted inequalities define facets of mixed-integer knapsack sets

with at most one continuous variable. Finally, we incorporated these inequalities in a
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branch-and-cut framework, and demonstrated their effectiveness in solving linear opti-

mization problems over these sets.
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Chapter 8

Conclusion

8.1 Summary of dissertation

In this dissertation, we reviewed various methodologies for designing capacitated sur-

vivable networks. We showed that the capacitated survivable network design problem

(SNP), in its myriad versions, results in very large and complex formulations and is com-

putationally very difficult to solve. Furthermore, the current research on survivable net-

works is still in the early stages of infancy - most of the work deals with the construction

of heuristics to solve the SNP. In Chapter 3, we presented a new approach that uses

directed cycles as failure-flow patterns to reroute disrupted flow. This approach consti-

tutes a hybrid between traditional approaches of dedicated and shared protection, and

performed better than dedicated protection schemes in terms of capacity efficiency.

Other hybrid schemes are easy to implement; see Grover and Stamatelakis (1998),

Schupke et al. (2002), Stamatelakis and Grover (2000). As in shared protection, no

assumptions are made on the network topology, or on the no-failure flows. However, all

disrupted flows are restricted (as in dedicated protection schemes such as self-healing

rings) to be rerouted among predetermined failure-flow patterns. In particular, we use

directed cycles as our failure-flow patterns.

We focused on the mixed-integer programming formulations for such frameworks,

and studied various polyhedra related to the SNP in an attempt to describe strong valid

inequalities. In particular, we focused on the arc-set and cut-set polyhedra. For both

196



www.manaraa.com

relaxations, we first studied the network design problem without any survivability require-

ments (NDP). In Chapter 2, we developed new classes of inequalities and proposed

more efficient separation algorithm for known families of inequalities. The inequalities

developed for the NDP significantly reduced the solution times when used in a branch-

and-cut framework, and provided significant insight toward the study of similar polyhedra

for the survivable case.

When designing survivable networks using directed cycles (SDC), we developed k-

partition inequalities for the cut-set polyhedra and extended the residual capacity inequal-

ities for the arc-set polyhedra. In Chapter 4, one class of the k-partition inequalities was

shown to be facet-defining even for the polyhedron of SDC, under mild conditions. Our

mixed-integer formulation for SDC was shown to have only as many constraints as NDP,

but included an exponential class of directed cycle variables. We studied the pricing

problem for these variables, and proposed a polynomial-time algorithm that was used to

handle these variables in a column generation approach.

Incorporated in a branch-and-cut algorithm, the strong valid inequalities reduced the

computational effort in solving SDC, often by an order of magnitude. These computational

results also scaled favorably to large problem instances, suggesting that using failure-flow

patterns is the key to designing large scale survivable networks. The usage of failure-flow

patterns allows us to design capacity-efficient networks, which can also be implemented

easily.

To design more capacity-efficient networks with less computational effort, we con-

sidered two main approaches. In the former, we considered other failure-flow patterns.

Based on preliminary computational efforts presented in Chapter 5, directed p-cycles

seemed to result in survivable networks with capacity efficiency comparable to global

rerouting. However, we see that designing survivable networks using directed p-cycles is

still computationally challenging. For instance, the pricing problem for the directed p-cycle

variables is NP-Hard. Furthermore, the cut-set polyhedra now changes significantly. On

the other hand, the arc-set polyhedra is unchanged, when compared with SDC.

The latter direction attempts to develop stronger inequalities for the SNP. We ap-
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proached this in two complementary directions. The first direction attempts to develop

problem-specific strong valid inequalities. In Chapter 6, we study the metric inequalities

for the NDP, and described metric-type inequalities for survivable network design, both

using directed cycles and directed p-cycles. These inequalities generalize the partition

inequalities of the cut-set polyhedra, and are shown to reduce solution times for SDP

by an order of magnitude. In the second direction, we developed problem-independent

inequalities for any mixed-integer knapsack set. Since this set is a relaxation of any con-

straint of a mixed-integer program, these can be used for all problems, see Chapter 7. We

developed these inequalities by sequence independent lifting of facets of the two integer

and one continuous variable restriction of the mixed-integer knapsack set.

8.2 Future directions of research

There are many directions in which the research in this dissertation can be continued.

In this section, we summarize some of the open questions from the preceding chapters;

and then discuss long-term research directions.

In the development of strong valid inequalities for the general mixed-integer knapsack

set, we considered partial LP relaxations to develop super-additive lifting functions, see

Chapter 7. Other relaxations can result in stronger super-additive lower bounds for the

exact lifting function, resulting in stronger valid inequalities. In the development of strong

valid inequalities for the arc-set polyhedra, it will be interesting to know to measure the

maximum possible improvement from these inequalities, especially for unsplittable flow

problems, see Chapter 2.

Most of the future work revolves around the design of survivable networks using di-

rected p-cycles (SDP), since this framework results in highly capacity-efficient networks.

We need to develop better (faster and more effective) heuristics to price directed p-cycles.

The exact pricing problem for the directed p-cycle variables is interesting in itself, and is

a possible direction for future study. Successfully pricing more directed p-cycle variables

with negative reduced costs will bring down the capacity requirements of SDP even closer

198



www.manaraa.com

to global rerouting.

Furthermore, we need to develop stronger inequalities for the polyhedra of various

relaxations of SDP. This will reduce the computation time even more. On the theoretical

front, we wish to characterize when these inequalities describe the convex hull of these

relaxations, and of SDP itself.

A challenging computational issue is how to integrate column and cut generation

schemes in a branch-and-price-and-cut algorithm. Synthesis of pricing and separation

requires that the separated inequalities do not change the pricing problem; and the sep-

arated inequalities can be modified to include variables that are priced later. Hence, we

see that synthesizing the separation and pricing problems is non-trivial and has been

successfully implemented only for simpler problems such as the multi-commodity flow

problem, see Barnhart et al. (2000).

More research is necessary to develop other methodologies to design capacitated

survivable network design problems, especially when extended to particular technolo-

gies, such as wavelength division multiplexing networks using either virtual wavelength

paths or wavelength paths. There may exist other frameworks, or other failure-flow pat-

terns that result in more capacity-efficient networks than SDP. Ideally, we will use a formu-

lation that allows us to choose from different failure-flow patterns. Each of these requires

us to study the corresponding pricing problem and polyhedra.

Another direction for future research addresses multiple edge failures. Some method-

ologies can be extended to incorporate multiple failures more easily than others; further

research is required.
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Appendix A

Miscellaneous tables

Table A.1: Miscellaneous notation

symbol explanation

Z set of integers
R set of reals
Q set of rational numbers

N+ non-negative elements of set N
N++ positive elements of set N

B set {0, 1}
log logarithm to base 2.
|N | number of elements in set N

v(H)
∑

i∈H vi for vector function v defined on set N and H ⊆ N
bαc maxx{x ∈ Z : x ≤ α}, for α ∈ R

dαe minx{x ∈ Z : x ≥ α}, for α ∈ R

r(α, β) α− bα/βcβ, for α, β ∈ R

r(α) r(α, 1)
[i, k] set of integers {j ∈ Z : i ≤ j ≤ k}

IntUni[α, β] integer-uniform distribution with minimum α and maximum β
(·)+ max{(·), 0}

I{(·)} indicator function I{(·)} to take the value 1 if (·) is true, and 0 otherwise.
ε a small strictly positive constant
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Table A.2: Acronyms used

acronym explanation

FCP Fixed-charge network flow problem
MFP Multi-commodity flow problem
NDP Network design problem with no survivability requirements
DPP 1+1 diverse protection network design problem
GNP Global rerouting shared protection problem
LNP Link rerouting shared protection problem
NDC Network design problem with connectivity requirements
PNP Path rerouting shared protection problem
RNP Self-healing ring network design problem
SCP Spare capacity assignment problem
SNP Capacitated survivable network design problem
HDC Spare capacity assignment problem using directed cycles
HUP Spare capacity assignment problem using undirected p-cycles
SDC Survivable network design problem using directed cycles
SDP Survivable network design problem using directed p-cycles
BLP Lifting problem for projected variables in lifted knapsack cover inequality
CPP Pricing problem of directed cycles
HPP Hamiltonian path problem
MCP Maximum chord problem
PPP Pricing problem of directed p-cycles
SFP Optimization problem over splittable flow arc set

SP Separation problem over splittable flow arc set
TSP Traveling salesperson problem
UFP Optimization problem over unsplittable flow arc set

UFPf Optimization problem over fractional unsplittable flow arc set
IP Pure-integer program

LP Linear programming
MIP Mixed-integer program
DP Diverse protection

SHR Self-healing rings
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Table A.3: Notation for network design problems

symbol explanation

G = (V,E) undirected graph with node set V and edge set E
G′ = (V, F ) directed graph with node set V and arc set F

F \ [ij] F \ {(ij), (ji)}
S set of failure states
0 no-failure state
K set of commodities
sk source node of commodity k
tk destination node of commodity k
dk demand quantity for commodity k ∈ K
bki supply of commodity k at node i
bk
sk dk

bk
tk

−dk

bki 0 for i ∈ V \ {sk, tk}
ekij cost associated with routing each unit of commodity k ∈ K on arc (ij)

P s
k set of paths from sk to tk in failure state s
δp
ij 1 if path p it includes arc (ij), and 0 otherwise
ζp
s 1 if path p is affected by failure state s ∈ S \ {0}
T set of installable capacity types
qt maximum demand that can be routed using one unit of capacity type t

ht
[ij] cost of installing unit capacity of type t ∈ T on edge [ij] ∈ E

C set of undirected cycles of G
C set of directed cycles of G′

αc
ij 1 if directed cycle c includes arc (ij), and 0

αc
[ij] 1 if undirected cycle c includes edge [ij], and 0 otherwise
ρc
[ij] 1 if edge [ij] is a chord to cycle c, and 0 otherwise
g0
ij pre-existing amount of demand routed through arc (ij) ∈ F

w0
[ij] pre-existing capacity on edge [ij] ∈ E

Table A.4: List of variables

symbol explanation

yks
ij fraction of commodity k routed through arc (ij) ∈ F in failure state s
yp fraction of commodity routed on path p

xt
[ij] amount of capacity of type t ∈ T installed on edge [ij]

zc amount of slack (fractional capacity) reserved on cycle c
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Appendix B

Proofs of results in Chapter 2

Proposition 2.4 For any extreme point (ȳ, x̄) of FL, let H̄ = {k ∈ K : 0 < ȳk < 1}.
Then, |H̄| ≤ 1.

Proof We prove that |H̄| ≤ 1 by contradiction. Assume that there exist i, j ∈ K, i 6= j
such that 0 < ȳi < 1 and 0 < ȳj < 1. Consider the points (ŷ, x̂)and (ỹ, x̃) obtained as
follows.

ŷk =







ȳk − djε if k = i,
ȳk + diε if k = j,
ȳk otherwise,

for k ∈ K, ỹk =







ȳk + djε if k = i,
ȳk − diε if k = j,
ȳk otherwise,

for k ∈ K,

and x̂ = x̃ = x̄. Since
∑

k∈K dkŷk =
∑

k∈K dkỹk =
∑

k∈K ȳk, (ŷ, x̂) and (ỹ, x̃) are
elements of FL. Furthermore, (ȳ, x̄) can be written as a convex combination of (ŷ, x̂) and
(ỹ, x̃). Thus, (ȳ, x̄) can not be an extreme point, and we have a contradiction.

Lemma 2.7 A point (ȳ, x̄) ∈ FL does not violate any residual capacity inequality (2.6)
with ηH ≤ x̄ or ηH ≥ x̄+ 1.

Proof Since residual capacity inequality (2.6) is the mixed-integer rounding inequality
(see Section 1.5.2) for the relaxation

∑

k∈H dk(1−yk)+x ≥ d(H)−w0, it is dominated by
∑

k∈H dk(1− yk) ≥ 0 and
∑

k∈H dk(1− yk) + x ≥ d(H)−w0 unless ηH − 1 < x < ηH .

Lemma 2.8 If there exists a residual capacity inequality (2.6) violated by a fractional
point (ȳ, x̄) ∈ FL, then there exists one given by H ⊆ T .

Proof Suppose the residual capacity inequality given by C ⊆ K is violated by (ȳ, x̄).
Then, d(C ∩ T ) + d(C \ T ) = w0 + bx̄c + rH . Consider the following two cases.
Case 1. d(C \ T ) < rH . In this case w0 + bx̄c < d(C ∩ T ). Also, d(C ∩ T ) < w0 + dx̄e
and C ∩ T has an objective value in SP that is no more than that of C. So let H = C ∩ T .
Case 2. d(C \T ) ≥ rH . In this case d(C ∩T ) ≤ w0 + bx̄c. Therefore, the objective value
for C in SP is

∑

k∈C d
k(1− ȳk −dx̄e+ x̄) + (dx̄e− x̄)(w0 + bx̄c) ≥

∑

k∈C d
k(1− ȳk −dx̄e+

x̄)+(dx̄e− x̄)d(C ∩T ) =
∑

k∈C∩T d
k(1− ȳk)+

∑

k∈C\T d
k(1− ȳk −dx̄e+ x̄) ≥ 0. However,

this contradicts the assumption that the residual capacity given by C is violated.

Lemma 2.9 If d(T ) ≤ w0+bx̄c or d(T ) ≥ w0+dx̄e, then there exists no residual capacity
inequality violated by (ȳ, x̄) ∈ FL.
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Proof Suppose d(T ) ≤ w0 + bx̄c. Then, there exists no H ⊆ T that satisfies the
constraints of SP and therefore, from Lemma 2.8, there exists no residual capacity in-
equality that is violated by (ȳ, x̄). Now suppose d(T ) ≥ w0 + dx̄e and, for contradic-
tion, suppose there exists a set H that gives a violated inequality. From Lemma 2.8,
we may assume that H ⊆ T . The objective value for H in SP is

∑

k∈H dk(1 − ȳk −
dx̄e + x̄) + (dx̄e − x̄)(w0 + bx̄c) ≥

∑

k∈T d
k(1 − ȳk − dx̄e + x̄) + (dx̄e − x̄)(w0 + bx̄c) ≥

(dx̄e+w0)(1−dx̄e+x̄)−(w0+x̄)+(dx̄e−x̄)(w0+bx̄c) = (dx̄e+w0)−(dx̄e−x̄)−(w0+x̄) = 0.
This contradicts the assumption that the inequality is violated by (ȳ, x̄).

Proposition 2.11 In any optimal solution (y∗, x∗) to UFP, x∗ = d
∑

k∈K dkyk∗ − w0e.

Proof We prove this by contradiction. Assume that (y∗, x∗) is an optimal solution to UFP
such that x∗ > d

∑

k∈K dkyk∗ − w0e. Consider the point (ŷ, x̂) defined as ŷ = y∗ and
x̂ = x∗ − 1. Since x∗ − 1 ≥ d

∑

k∈K dkyk∗ − w0e, (ŷ, x̂) ∈ DU . Furthermore,
∑

ckŷk −
x̂ =

∑

k∈K ckyk∗ − x̂ >
∑

k∈K ckyk∗ − x∗. Thus, (y∗, x∗) is not optimal, and we have a
contradiction.

Proposition 2.12 UFP has an optimal solution (y?, x?) such that

yk? =

{

1 if ck ≥ ddke,
0 if ck ≤ bdkc,

for k ∈ K.

Proof For H ⊆ K let ξ(H) be the maximum value of the objective of UFP when yk = 1
for all k ∈ H, and yk = 0 otherwise, i.e., ξ(H) = c(H) − dd(H) − w0e. Suppose k 6∈ H.
Then ξ(H)− ξ(H ∪ k) = dd(H) + dk −w0e− dd(H)−w0e− ck. Since for any a, b ∈ R, we
have dae + bbc ≤ da+ be ≤ dae + dbe, it follows that

ξ(H)−ξ(H∪k)

{

≤ 0 if ck ≥ ddke,
≥ 0 if ck ≤ bdkc.

Theorem 2.14 UFP is NP-hard for any fixed value of w0.

Proof The proof is by reduction from PARTITION (Garey and Johnson 1979): Given a
set K and weights dk k ∈ K with d(K) = 2, does there exist H ⊂ K such that d(H) = 1?

Let w0 be fixed to w̄0 and let f̄0 = w̄0 − bw̄0c. Let α > 1 and 1 > ε > 0. To answer
PARTITION, we construct the following instance of UFP with w0 = w̄0.

ς = max
∑

k∈K

dkyk + 3αy0 − αx

s.t. :
∑

k∈K

dkyk + (ε+ f̄0(1 + ε))y0 ≤ (1 + ε)(w̄0 + x)

yk ∈ {0, 1} k ∈ K

y0 ∈ {0, 1}

x ∈ Z

After dividing the objective by α and the constraint by 1 + ε, since d ε
1+ε + f̄0e < 3, from

Proposition 2.12 we see that y0 = 1 and hence x ≥ d−w̄0e + 1 in every optimal solution
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to UFP. Also since d(K) + ε+ f̄0(1 + ε) < (1 + ε)(f̄0 + 2), from Proposition 2.11 we have
x ≤ d−w̄0e+2 in any optimal solution. The objective value ς(x) as a function of x satisfies
the following: ς(d−w̄0e + 1) ≤ 1 + 2α + αbw̄0c and ς(d−w̄0e + 2) ≤ 2 + α + αbw̄0c. Let
H? be the index set of binary variables at value 1 in an optimal solution. Since α > 1,
ς = 1 + 2α + αbw̄0c if and only d(H?) = 1. Hence, the PARTITION problem has an
affirmative answer if and only if the optimal value of UFP equals 1 + 2α+ αbw̄0c.

Proposition 2.16 UFPf is related to UFP in the sense that H ⊆ K maximizes UFP if
and only if H maximizes UFPf . Furthermore, ξf = ξ − bw0c.

Proof For H ⊆ K let ξ(H) = c(H) − dd(H) − w0e. Then,

ξ(H) =
∑

k∈H

bckc + g(H) −
∑

k∈H

bdkc + bw0c − df(H) − f0e

= g(H) + bw0c − df(H) − f0e = ξf (H) + bw0c.

Proposition 2.19 An inequality
∑

k∈K πkyk ≤ π0 + x with bdkc ≤ πk ≤ ddke is valid for
FU if and only if

∑

k∈K(πk − bπkc)yk ≤ π0 − bw0c + x is valid for FUf .

Proof From Propositions 2.16 and 2.18,

max{
∑

k∈K

πkyk − x :
∑

k∈K

dkyk ≤ w0 + x, (y, x) ∈ DU}

= max{
∑

k∈K

(πk − bπkc)yk − x :
∑

k∈K

fkyk ≤ f0 + x, (y, x) ∈ DU} + bw0c.

Then, for any π0,

max{
∑

k∈K

πkyk − x :
∑

k∈K

dkyk ≤ w0 + x, (y, x) ∈ DU} ≤ π0

⇐⇒ max{
∑

k∈K

(πk − bπkc)yk − x :
∑

k∈K

fkyk ≤ f0 + x, (y, x) ∈ DU} ≤ π0 − bw0c.

Thus,
∑

k∈K πkyk ≤ π0+x is valid for FU if and only if
∑

k∈K(πk−bπkc)yk ≤ π0−bw0c+x
is valid for FUf .

Theorem 2.21 The maximal c-strong inequalities (2.7) constitute all facet-defining in-
equalities

∑

k∈K πkyk ≤ π0 + x of conv(FU ) with integral πk, k ∈ [0, |K|].

Proof Let
∑

k∈K πkyk ≤ π0 + x be a facet-defining inequality of conv(FU ) with integral
coefficients. From Proposition 2.18, it follows that πk ∈ {0, 1} for k ∈ K. Let H = {k ∈
K : πk = 1}. From Proposition 2.12, we have that π0 = cH .

Proposition 2.22 Let H = {k ∈ K : πk ≥ djdke}. Any inequality
∑

k∈K πkyk ≤
π0 + jx with j ∈ Z++ and πk ≤ bjdkc or πk ≥ djdke for all k ∈ K is valid for FU for
π0 = π(H) − djd(H) − jw0e.
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Proof The proof is an immediate consequence of Proposition 2.12.

π0 = π(H) − djd(H) − jw0e

= max{
∑

k∈K

πkyk − z :
∑

k∈K

jdkyk ≤ jw0 + z, (y, z) ∈ DU}

≥ max{
∑

k∈K

πkyk − jx :
∑

k∈K

dkyk ≤ w0 + x, (y, x) ∈ DU} (jx = z)

Proposition 2.23 Let fH = r(d(H) − w0) = d(H) − w0 − bd(H) − w0c. Inequality
(2.8) is facet-defining for conv(FU ) if either H is maximal c-strong in the j-split relaxation;
fH > (j − 1)/j and w0 ≥ 0; or dk > fH for all k ∈ H and dk < 1 − fH for all k ∈ K \H.

Proof Let (C, z) denote a point (y, z) ∈ B|K| × Z where yk = 1 for all k ∈ C, and yk = 0
otherwise. Consider the following |K| + 1 affinely independent points of F j

U :
(H, dj(d(H) − w0)e) if cjH 6= 0, (∅, 0) if cjH = 0;
(H \ {k}, dj(d(H) − dk − w0)e) for k ∈ H;
(H ∪ {k}, dj(d(H) + dk − w0)e) for k ∈ K \H.

Since H is maximal c-strong in j-split relaxation, we have dj(d(H) − w0)e = dj(d(H) −
dk − w0)e + djdke for all k ∈ H and dj(d(H) − w0)e = dj(d(H) + dk − w0)e + bjdkc for
all k ∈ K \ H. Therefore, after replacing z with x = z/j, these points satisfy the j-split
c-strong inequality (2.8) at equality. To complete the proof, it is enough to show that z/j
is integer for the points above. If j r(w) > j − 1, then dj r(w)e = j since r(w) < 1, so
djwe = jbwc+ dj r(w)e = jdwe. Thus, dj(d(H)−w0)e/j = dd(H)−w0e for the first point
since fH > (j − 1)/j. Similarly, dj(d(H) − dk − w0)e/j = bd(H) − w0c for k ∈ H and
dj(d(H) + dk − w0)e/j = dd(H) − w0e for k ∈ K \ H; since dk > fH for all k ∈ H, and
dk < 1 − fH for all k ∈ K \H.

Proposition 2.25 For any cover C, α ≤ 1 ≤ α holds.

Proof We show that α ≤ 1 and α ≥ 1.

α =
1

dd(C) + d(K1) − a0e − ν
=

1

dre
≤ 1

α ≥ min

{

ξ(ν) − ξ(x)

ν − x
: x ∈ {dd(K1) − w0e, . . . , ν − 1}

}

, (as ξ(ν) ≤ |C| − 1)

where ξ(x) = max

{

∑

k∈C

yk :
∑

k∈C

dkyk ≤ w0 − d(K1) + x, yk ∈ {0, 1} k ∈ C

}

≥ 1 (as dk < 1 for all k ∈ C, ξ(ν) − ξ(x) ≥ ν − x for all x)

Proposition 2.26 The maximal c-strong inequalities are equivalent to the lifted minimal
cover inequalities with α = α.

Proof Let H be maximal c-strong. Then, the c-strong inequality
∑

k∈H yk ≤ cH + x is
facet-defining for conv(FU ), and H is a minimal cover with ν = bd(H)−w0c, K0 = K \H
and K1 = ∅. Consider the cover inequality lifted with the capacity variable using α = α =
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1,
∑

k∈H yk ≤ |H| − 1 − ν + x. Since dk < 1 and since H is maximal c-strong, we have
bd(H) − w0c < d(H) − w0, it follows that |H| − 1 − ν = cH . Since the c-strong inequality
is facet-defining, the lifting coefficients of all of the projected binary variables must be
0. Thus, the maximal c-strong inequality is indeed a lifted minimal cover inequality. The
other direction follows from Theorem 2.21 since α = 1 and hence the coefficients of the
lifted cover inequality are integer.

Lemma 2.28 If C is a minimal cover and α = α, then the lifting coefficients of inequality
(2.9) satisfy αk ≤ |C| − 1 for all k ∈ K0 and −αk ≤ |C| − 1 for all k ∈ K1.

Proof From the definition of α, α ≤ |C| − 1 with x = ν − 1. Since C is a minimal cover,
the lifted inequality is facet-defining for conv(FU ). Then from Proposition 2.18, since
0 < dk < 1, we have αk ≤ α for k ∈ K0 and −αk ≤ α for k ∈ K1.

Theorem 2.29 For a minimal cover, a lifted knapsack cover inequality with α= α can
be constructed in O(|K|3).

Proof We have already argued that α can be computed in O(|K| log |K|). Since the
coefficients of the objective function of the lifting problem BLP is bounded, when comput-
ing αk k ∈ K0 ∪K1, it is more efficient to solve BLP with the dual knapsack formulation
KP2 in Section 2.3.4.1. Scaling the objective of BLP by 1/α, we write BLP in the form of
UFPf . Since α is a common multiple of the coefficients αk/α and α ≤ |C|−1 < |K|, from
Theorem 2.17 the lifting problem for a single binary variable can be solved in O(|K|3)
by dynamic programming. Furthermore, similar to the lifting of binary knapsack cover
inequalities (Zemel 1989), the lifting coefficients of all projected variables can also be
computed in O(|K|3) by dynamic programming, since the set of variables in the knap-
sack problems solved for lifting are nested.
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Appendix C

Proofs of results in Chapter 4

Theorem 4.2 For any non-empty 2-partition (A,B) of G with |[AB]| ≥ 3, the 2-partition
inequality (4.9) is facet-defining for the convex hull of feasible solutions of SDC if the two
sub-graphs G′

A and G′
B are 2-connected, and either r̄A > 1/2 or dA > max{dB, 2}.

Proof For the non-empty partition (A,B), let G′
A = (A,FA), G′

B = (B,FB) be the sub-
graphs defined by them. Define C ′ as the set of all directed cycles that do not contain
any edges in [AB], and let C̄ = C \ C′. Define K ′ as the set of commodities that have
source and destination nodes sk and tk in the same sub-graph. For each commodity
k, consider an arbitrary arborescence (Tk) rooted at the source node sk. Consider an
arbitrary equation

∑

(ij)∈F

∑

k∈K

πk
ijy

k
ij +

∑

[ij]∈E

β[ij]x[ij] +
∑

c∈C

αczc = γ (C.1)

on the variables (y, x, z). Since by adding appropriate multiples of (3.20) for commodity
k for all nodes in the depth-first sequence of Tk, we can eliminate the coefficients of the
flow variables corresponding to arcs in Tk in (C.1); without loss of generality we assume
πk

ij = 0, ∀(ij) ∈ Tk, ∀k. Let x′ be an arbitrary feasible solution that satisfies (4.9) at
equality. Later in the proof, we show the existence of such x′ under the assumptions of
the theorem. We use x′ to derive other feasible points that satisfy (4.9) at equality, and
prove that they define (C.1) up to a scalar multiple, and a multiple of equalities (3.20). Let
ε be an infinitesimally small positive constant, and d′ = dA + r̄A − 1.

We first show that β[ij] = 0, ∀[ij] ∈ E \ [AB]. For any edge [ij] ∈ E \ [AB], we
increase the capacity by one unit to obtain a new feasible solution x′′ that still satisfies
(4.9) at equality. Substituting x′ and x′′ into (C.1), β[ij] = 0, [ij] ∈ E \ [AB].

We now show that αc = 0, ∀c ∈ C′. Consider the feasible solution x′′ obtained by
adding one unit of capacity to x′ on all edges [ij] ∈ E \ [AB]. This new solution also
satisfies (4.9) at equality. For any directed cycle c ∈ C ′, we increase the slack reserved
for the cycle by one unit to obtain a new feasible solution x′′′ that satisfies (4.9) at equality.
Substituting x′′ and x′′′ into (C.1), αc = 0, c ∈ C′.

Next we prove that πk
ij = 0, ∀(ij) ∈ F \ (AB ∪ BA), k ∈ K. Consider the feasible

solution x′′ obtained by adding one unit of capacity to x′ on all edges [ij] ∈ E \ [AB];
redirecting the flow such that there exists some positive flow on all arcs in Tk \(AB∪BA),
for each commodity k without increasing the flow on the arcs in AB ∪BA; and increasing
the slack reserved on directed cycles in C ′ such that the new flow is covered. This can
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be done because the sub-graphs obtained by removing [AB] are 2-connected. Since we
only increased capacity on all edges in E \ [AB], and increased flow and slack on arcs
in F \ AB, x′′ is feasible, and also satisfies (4.9) at equality. For commodity k, consider
any arc (ij) ∈ F \ (AB ∪ BA ∪ Tk). We can redirect ε additional units of flow through
this arc by changing flow by ε units only among the arcs in Tk \ (AB ∪BA) (by using the
fundamental circuit for tree Tk). We satisfy (3.21) by reserving additional slack on directed
cycles in C ′ that cover arcs on which flow is increased. This new solution (x′′′) is feasible
since unused capacity exists on these edges by definition of x′′, and also satisfies (4.9)
at equality. Substituting x′′ and x′′′ into (C.1), πk

ij = 0, (ij) ∈ F \ (AB ∪BA), k ∈ K.

Figure C.1: Feasible solution

dA

c2

[ij]2

[ij]1 [ij]1

[ij]2

[ij]3

c1

c5

dB

max{dB − d′, 0}

min{dB , d
′}

2ε

Case 1: r̄A > 1/2

dA − r̄A − 2ε

r̄A

Case 2: r̄A ≤ 1/2, dA > max{2, dB}

c4

c1c3

c2

For the coefficients β[ij] [ij] ∈ [AB], we treat the case r̄A > 1/2 separately from
dA > max{2, dB}. For both cases, we only need to route commodities in K \ K ′ using
the arcs in AB ∪ BA. Since the two sub-graphs G′

A and G′
B are 2-connected, all other

commodities can be routed using arcs in F \(AB∪BA) and can be covered using directed
cycles that do not cross the 2-partition (C ′). For all feasible points considered in the rest of
the proof, we install sufficiently large capacity on edges in E \ [AB] and slack on directed
cycles in C ′ while still satisfying (4.9) at equality.

Case 1. r̄A > 1/2. Consider the feasible solution x′ shown in Figure C.1. We set
flow variables yA

(ij)1
= dA and yB

(ji)2
= dB; directed cycle variables zc1 = dA + ε and

zc2 = ε; and installed capacity variables x[ij]1 = ddAe and x[ij]2 = ddAe. Since r̄A > 1/2,
2ddAe = d2dAe; thus x′ satisfies (4.9) at equality. Furthermore, we can obtain some other
feasible solution x′′ by choosing another edge [ij]3 instead of either [ij]1 or [ij]2 since G′

A

and G′
B are connected, and there exists sufficient spare capacity on all edges in E \ [AB].

This new solution still satisfies (4.9) at equality. Substituting such pairs of solutions into
(C.1), β[ij] = β, ∀[ij] ∈ [AB].
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Case 2. r̄A ≤ 1/2, dA > max{2, dB}. Consider the solution x′ shown in Figure C.1.
We set flow variables yA

(ij)1
= dA− r̄A−2ε, yA

(ij)2
= r̄A, yA

(ij)3
= 2ε, yB

(ji)2
= max{dB −d′, 0}

and yB
(ji)3

= min{dB, d
′}; directed cycles variables zc1 = dA−1+ε, zc2 = ε, zc3 = 1−r̄A−2ε,

zc4 = r̄A + ε, and zc5 = 3ε/2; and installed capacity variables x[ij]1 = ddAe − 1, x[ij]2 = 1
and x[ij]3 = bdAc. Since r̄A ≤ 1/2, ddAe+bdAc = 2ddAe−1 = d2dAe; thus x′ satisfies (4.9)
at equality. Furthermore, we can obtain another solution x′′ that satisfies (4.9) at equality,
by interchanging the values (flow, directed cycle, capacity) on edges [ij]2 and [ij]3. This
solution is feasible since the sub-graphs G′

A and G′
B are 2-connected, and there exists

sufficient spare capacity on all the edges. Substituting such pairs of solutions x′ and x′′

into (C.1), β[ij] = β, ∀[ij] ∈ [AB].
For the rest of the coefficients, we define Yij and Zij as the total flow and slack

reserved for directed cycles on arc (ij), respectively. For the solution x′ (for both cases),
we have Yij < Zji and Yij +Zij < x[ij] (ij) ∈ AB ∪BA, whenever x[ij] > 0. For instance,
consider edge [ij]2 in Case 2. We have Y(ij)2 = r̄A, Z(ji)2 = zc4 = r̄A + ε > Y(ij)2 and
Y(ji)2 = max{dB − d′, 0} < 1− r̄A, Z(ij)2 = zc3 + zc5 = 1− r̄A − ε/2 > Y(ji)2 . Furthermore,
Y(ij)2 + Z(ij)2 = 1 − ε/2 < x[ij]2 and Y(ji)2 + Z(ji)2 < 1 = x[ij]2 . Hence, we can obtain
a new feasible solution (x′′) by reserving ε additional units of slack on any directed cycle
c ∈ C̄. This new solution (x′′) satisfies (4.9) at equality. Substituting x′ and x′′ into (C.1),
αc = 0, c ∈ C̄.

Now for commodity k, consider any arc (ij) ∈ (AB ∪ BA) \ Tk. Starting with solution
x′, we can redirect ε additional units of flow through this arc by changing flow by ε units
only among the arcs in Tk (using the fundamental circuit). Furthermore, we satisfy (3.21)
by reserving additional slack on some directed cycle in C that covers arc (ij). This new
solution (x′′′) is feasible since unused capacity exists on all edges by definition of x′,
and also satisfies (4.9) at equality. Substituting x′ and x′′′ into (C.1), πk

ij = 0, (ij) ∈
(AB ∪ BA) \ Tk. Finally, plugging x′ into (C.1), we obtain γ = d2dAeβ. Dividing (C.1) by
β, it reduces to (4.9).

Theorem 4.3 For H1 ⊆ AB, H2 ⊆ BA, the 2-partition inequalities

rAx([H1]) + (1 − rA)x([H2]) + yA(AB\H1)

+z(AB\H1) − yA(H2) − yA(BA\ [H1]) ≥ rAηA

(C.2)

rBx([H2]) + (1 − rB)x([H1]) + yB(BA\H2)

+z(BA\H2) − yB(H1) − yB(AB\ [H2]) ≥ rBηB

(C.3)

are valid for F2.

Proof We show the validity for inequality (C.2). Relaxing the flow balance constraint for
commodity A,

yA(AB) ≥ dA + yA(BA\ [H1]).

Using (4.8) and the fact that the slack reserved for directed cycles containing arcs AB is
greater than the flow in the reverse direction, we have

z(AB) ≥ dA + yA(H2).
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Since the capacity installed on a set of edges is greater than the net flow and the slack
reserved on directed cycles containing the corresponding arcs,

x([H1])+ ≥ yA(H1) + z(H1).

Finally, adding these three inequalities, we have

x([H1]) + yA(AB\H1) + z(AB\H1) − yA(H2) − yA(BA\ [H1]) ≥ 2dA. (C.4)

Adding x([H2])−x[H2] to the left-hand-side of (C.4) and applying mixed-integer rounding
(see Section 1.5.2) to the resulting inequality, we obtain the inequality (C.2). Validity of
(C.3) can be shown in the same way by considering commodity B instead of commodity
A.

Theorem 4.4 Let F1 denote the convex hull of points satisfying the 1-commodity 2-
partition relaxation; i.e., all (y ∈ R2|AB|, z ∈ R2|AB|, x ∈ Z|AB|) satisfying (4.12)-(4.15).
The inequality

rAx([H1]) + yA(AB\H1) + z(AB\H1) − yA(BA\ [H1]) ≥ rAηA (C.5)

is facet-defining for F1 if and only if rA > 0 and H1 6= ∅.

Proof First we prove that (C.5) is not facet-defining for F1 if rA = 0 or H1 = ∅. If rA = 0,
then (C.5) reduces to z(AB\H1) + y(AB\H1)− y(BA\[H1]) ≥ 0, which is dominated by
the sum of the non-negativity constraints of y(AB\H1) and the survivability constraints of
(BA\[H1]). If H1 = ∅, then the inequality reduces to z(AB) + yA(AB)− yA(BA) ≥ rAηA,
which is dominated by z(AB) = z(BA) ≥ yA(AB) ≥ dA; since 2dA ≥ rAηA.

Next, we prove that (C.5) is facet-defining if rA > 0 and H1 6= ∅. Let fij and gij denote
the unit vectors of flow and directed cycle variables, respectively, for (ij) ∈ AB∪BA, and
h[ij] denote the unit vector of the capacity variables for [ij] ∈ [AB].

Let
∑

(ij)∈AB∪BA(πijy
A
ij + αijzij) +

∑

[ij]∈[AB] β[ij]x[ij] = β0 define an arbitrary hy-
perplane that contains the face induced by (C.5). Let (st) ∈ H1. Since all points of
F1 satisfy yA(AB) − yA(BA) = dA and z(AB) = z(BA), we may add multiples of
these equalities to a valid inequality without changing it. Therefore, without loss of
generality we assume πst = αst = 0. Consider the following points of the face. Let
u0 = ηAhst + dAgst + dAgts + dAfst. From points u0 + h[ij], we see that β[ij] = 0,
∀[ij] ∈ [AB]\ [H1]. From points u0 +εgst +h[ij] +εgji, we obtain αij = 0, ∀(ij) ∈ BA\[H1].
Similarly, from the point u0 + εgst + εgts, we obtain αts = 0. Therefore, αij = 0∀(ij) ∈ BA.
From points u0 + εgts + εfst + h[ij] + εgij + εfji, we obtain αij = −πji, ∀(ij) ∈ AB\H1.

For the rest of the coefficients, consider points vij = u0 − hst − rAgts − rAfst + h[ij] +
rAgji+rAfij and wij = u0−hst−rAgst+h[ij]+rAgij , for (ij) ∈ AB\{(st)}. Comparing u0

and vij , we have βst = rAπij , ∀(ij) ∈ AB\H1. On the other hand, comparing u0 and wij ,
we have βst = rAαij , ∀(ij) ∈ AB\H1. From wij and wij + εgij + εgji, we obtain αij = αji,
∀(ij) ∈ H1 \{(st)}. Further, comparing vij and wij , we obtain πij = 0, ∀(ij) ∈ H1 \{(st)}.
From vij and vij − εgts − εfst + εfij + εgij − εgji, we obtain αij = −αji, ∀(ij) ∈ H1 \ {(st)}.
Thus, αij = αji = 0, ∀(ij) ∈ H1 \ {(st)}. Comparing u0 and wij , we also see that
βst = β[ij], ∀[ij] ∈ [H1]. Also, from points wij and wij−εgst+εgts+εfst+h[ij]+2εgij +εfji,
we obtain πji = 0, ∀(ij) ∈ H1 \ {(st)}. From the point u0 + εgst + εgts + εfst + εfts, we
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see that πts = 0. Finally, plugging in these coefficients for u0, we find that ηAβ[st] = β0.
Therefore, the points described above define the hyperplane up to a scalar multiple and
a multiple of the two equalities. Dividing all coefficients by β[st]/rA, we arrive at (C.5).
Hence, we have shown that the face of F1 induced by (C.5) has 5|[AB]| − 2 affinely
independent points.
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Appendix D

Proofs of results in Chapter 5

Theorem 5.2 The pricing problem of directed p-cycles (PPP) is NP-hard.

Proof We prove the theorem by reducing PPP to the decision version of TSP (Garey
and Johnson 1979): Given a complete directed graph G′ = (V, F ), weights d : F 7→ Z+,
and a positive integer k, does there exist a hamiltonian cycle in G′ with total weight < k?
To answer TSP, we construct the following instance of PPP. Let n = |V |, and M > nk. For
(ij) ∈ F , let fa

ij = d[ij] + (M(n− 3)− 2k)/(n(n− 1)) and fh
ij = −(M + k)/(n(n− 1)). This

construction is polynomial in n and log k. Let d(c) be the weight of cycle c for the TSP.
Now, any directed p-cycle on G′ with ` arcs has exactly `2 − 3` directed chords. Hence
the weight of directed p-cycle c with ` arcs is equal to

∑

(ij)∈F

αc
ijf

a
ij +

∑

[ij]∈E

ρc
[ij]f

h
ij = d(c) +

`(M(n− 3) − 2k)

n(n− 1)
−
`(`− 3)(M + k)

n(n− 1)

= d(c) +M
`(n− 3) − `(`− 3)

n(n− 1)
− k

2`+ `(`− 3)

n(n− 1)

= d(c) +M
`(n− `)

n(n− 1)
− k

`(`− 1)

n(n− 1)
. (D.1)

When M is chosen as above, (D.1) is positive unless ` = n. Hence, PPP has an affirma-
tive answer only if the directed p-cycle is Hamiltonian. However, since the weight of any
Hamiltonian directed p-cycle c on G is d(c) − k (the second term in (D.1) vanishes when
` = n), PPP has an affirmative answer if there exists a Hamiltonian cycle c of weight
d(c) < k. Hence, TSP has an affirmative answer if and only if PPP has an affirmative
answer.
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Appendix E

Proofs of results in Chapter 6

Theorem 6.10 The maximum chord problem (MCP) is NP-hard.

Proof The proof is by reduction from the NP-hard hamiltonian path problem (HPP)
(Garey and Johnson 1979): Given an undirected network G = (V,E), does there exist a
simple path that passes through all nodes in G?

To answer HPP, we construct the following instance of MCP. Let the network Ḡ =
(V̄ , Ē), where V̄ = V ∪ {u}, and Ē = E ∪ {[ui], ∀i ∈ V }. The partition is defined as
A = {u}, B = V̄ \ A. Let n = |V |. We note that this is a polynomial construction in n
since |V̄ | = n+ 1 and |Ē| = |E| + n.

For any directed p-cycle c, let `c be the number of times it uses an arc in AB, and let
ωc be the number of chords among the edges in [AB]. The number of edges in the cut is
n, and hence the optimal solution to MCP ≤ n − 2 since `c ≥ 1 for any directed p-cycle
c. Now, any cycle that actually attains this value has to pass through all the nodes in B.
This implies that there exists an HPP in G. It is also easily seen that if there exists a
Hamiltonian path in G (say i− · · · − j), then there exists a cycle in Ḡ (u− i− . . .− j − u)
that has ωc = n− 2 and `c = 1. Hence HPP on G has an affirmative answer if and only if
MCP has a solution n− 2 for the partition (A,B).

Proposition 6.7 If the sub-graphsG′
A andG′

B are 2-connected, then the solution vij = 1
if (ij) ∈ AB, and 0 otherwise, is optimal when uij = 1 if (ij) ∈ AB, and 0 otherwise.

Proof First, we prove that vij = 0 for all (ij) ∈ F \ (AB ∪ BA) for all feasible solutions.
Then, we show that there exists at least one optimal solution such that vij = vAB, (ij) ∈
AB and vij = vBA, (ij) ∈ BA. Finally, we prove that vBA = 0 and vAB = 1 for at least
one optimal solution. We define C ′ as the set of all directed cycles that do not contain any
edges in [AB], and let C̄ = C \ C′. For directed cycle c, let `c be the number of times it
uses any arc in AB.

For all (ij) ∈ F \[AB], there exists some c ∈ C ′ such that αc
ij = 1, since the sub-graphs

G′
A and G′

B are 2-connected. Then, since (6.20) reduces to −
∑

(ij)∈F\(AB∪BA) α
c
ijvji ≥ 0

for all c ∈ C′, we have vij = 0 for all (ij) ∈ F \ (AB ∪BA).
Now, (6.20) reduces to

−
∑

(ij)∈BA

αc
ijvji +

∑

(ij)∈AB

αc
ij(1 − vji) ≥ 0 ∀c ∈ C̄ (E.1)
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Since vij = 0 for all (ij) ∈ F \ (AB ∪BA) and sub-graphs G′
A and G′

B are connected, the
objective function reduces to

max dA(1 + min
(ij)∈AB

vij) + dB( min
(ij)∈BA

vij) (E.2)

Suppose that in all optimal solutions, there exist some (ab), (cd) ∈ AB such that vab > vcd.
Then, we can reduce vab to vcd without decreasing the objective. We have a contradiction;
thus there exists at least one optimal solution such that vab = vcd for all (ab), (cd) ∈ AB.
We restrict our discussion to such solutions. Similarly, we can prove that least one optimal
solution such that vab = vcd for all (ab), (cd) ∈ BA. We have proved that there exists at
least one optimal solution such that vij = vAB, (ij) ∈ AB and vij = vBA, (ij) ∈ BA.

Now, (E.1) reduces to −`cvAB + `c(1 − vBA) ≥ 0 for all c ∈ C̄, which is equivalent to
vAB + vBA ≤ 1. Since (E.2) reduces to max dA(1 + vAB) + dBvBA, and dA ≥ dB without
loss of generality, there exists at least on optimal solution with vAB = 1 and vBA = 0.

Proposition 6.9 If the sub-graphs G′
A and G′

B are 2-connected, then the solution vij =
µAB if (ij) ∈ AB, and 0 otherwise, is optimal when u is fixed so that the left hand side
corresponds to the cardinality-k cut-set inequality (6.32), i.e., when uij = 1 if (ij) ∈ AB,
and 0 otherwise.

Proof First, we prove that vij = 0 for all (ij) ∈ F \ (AB ∪ BA) for all feasible solutions.
Then, we show that there exists at least one optimal solution such that vij = vAB, (ij) ∈
AB and vij = vBA, (ij) ∈ BA. Finally, we prove that vBA = 0 and vAB = µAB for at least
one optimal solution. We define C ′ as the set of all directed p-cycles that do not contain
any edges in [AB], and let C̄ = C \C′. For directed p-cycle c, let `c be the number of times
it uses an arc in AB, and let ωc be the number of chords among the edges in [AB].

For all (ij) ∈ F \[AB], there exists some c ∈ C ′ such that αc
ij = 1, since the sub-graphs

G′
A and G′

B are 2-connected. Then, since (6.31) reduces to −
∑

(ij)∈F\(AB∪BA)(α
c
ijvji +

ρc
[ij]vij) ≥ 0 for all c ∈ C ′, we have vij = 0 for all (ij) ∈ F \ (AB ∪BA).

Now, (6.31) reduces to

−
∑

(ij)∈BA

αc
ijvji +

∑

(ij)∈AB

αc
ij(1 − vji) −

∑

(ij)∈(AB∪BA)

ρc
[ij]vij ≥ 0 ∀c ∈ C̄ (E.3)

Since vij = 0 for all (ij) ∈ F \ (AB ∪BA) and sub-graphs G′
A and G′

B are connected, the
objective function reduces to

max dA(1 + min
(ij)∈AB

vij) + dB( min
(ij)∈BA

vij) (E.4)

Suppose that in all optimal solutions, there exist some (ab), (cd) ∈ AB such that vab > vcd.
Then, we can reduce vab to vcd without decreasing the objective. We have a contradiction;
thus there exists at least one optimal solution such that vab = vcd for all (ab), (cd) ∈ AB.
We restrict our discussion to such solutions. Similarly, we can prove that least one optimal
solution such that vab = vcd for all (ab), (cd) ∈ BA. We have proved that there exists at
least one optimal solution such that vij = vAB, (ij) ∈ AB and vij = vBA, (ij) ∈ BA.

Now, (E.3) reduces to −`cvAB + `c(1 − vBA) − ωc(vAB + vBA) ≥ 0 for all c ∈ C̄,
which is equivalent to vAB + vBA ≤ `c/(`c + ωc). for all c ∈ C̄. Since (E.2) reduces to
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max dA(1+ vAB)+ dBvBA, and dA ≥ dB without loss of generality, there exists at least on
optimal solution with vAB = µAB and vBA = 0.
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Appendix F

Proofs of results in Chapter 7

Theorem 7.2 Let H ⊆ P+ and n = |N |. If πx − y ≤ π0 − v(H) defines a facet of
conv(M≤

n (b− v(H))), then πx+ w(H) − w(P−) ≤ π0 defines a facet of conv(M(b)).

Proof We first demonstrate the validity of the inequality, and then describe the affinely
independent points which prove that it defines a facet. Using the results in Atamtürk
(2003b), we aggregate all variables in P− into a single continuous variable z.

Assume that πx + w(H) − z ≤ π0 is not valid for M(b). =⇒ There exist w̄, ȳ, x̄
such that ax̄ + w̄(P+) − z̄ ≤ b and πx̄ + w̄(H) − z̄ > π0. Setting ŷ = z̄ + v(H) − w̄(H),
we have ax̄ − ŷ ≤ b − v(H) (since w̄(P+ \ H) ≥ 0) and πx̄ − ŷ > π0 − v(H). Since
x̄, ŷ ∈ M≤

n (b)(b − v(H)), inequality πx − y ≤ π0 − v(H) is not valid, and we have a
contradiction.

Since πx − y ≤ π0 − v(H) defines a facet of conv(M≤
n (b − v(H))), we have n + 1

affinely independent elements p1, . . . pn+1 such that
∑n

i=1 πip
j
i − pj

0 = π0 − v(H) and
∑n

i=1 aip
j
i − pj

0 ≤ b − v(H) for all j ∈ [1, n+ 1]. From the affine independence of these
points, we know that λj = 0, j ∈ [1, n+ 1] is the only solution to

n+1
∑

j=1

λjp
j
i = 0, i ∈ [1, n],

n+1
∑

j=1

λjp
j
0 = 0,

n+1
∑

j=1

λj = 0. (F.1)

We assume without loss of generality that
∑n

i=1 aip
1
i −p

1
0 < b−v(H) and p2

0 > 0; otherwise
the facet is trivial. We show that the following n + |P | elements of M(b) are affinely
independent; where the elements are listed as vectors with the components as follows.

xi, i ∈ [1, n] y wk, k ∈ H w`, ` ∈ P+ \H

pj
i , i ∈ [1, n] pj

0 vk, k ∈ H 0 ∀j ∈ [1, n+ 1]
p2

i , i ∈ [1, n] p2
0 − ε vt − εI{t = k}, t ∈ H 0 ∀k ∈ H

p1
i , i ∈ [1, n] p1

0 vk, k ∈ H εI{t = `}, t ∈ P+ \H ∀` ∈ P+ \H
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To prove affine independence, we need to show that λ = 0 is the only solution to

n+1
∑

j=1

λjp
j
i +

∑

k∈H

λkp
2
i +

∑

`∈C+\H

λ`p
1
i = 0 i ∈ [1, n] (F.2)

n+1
∑

j=1

λjp
j
0 +

∑

k∈H

λk(p
2
0 − ε) +

∑

`∈C+\H

λ`p
1
0 = 0 (F.3)

(

n+1
∑

j=1

λj +
∑

t∈H

λt +
∑

`∈C+\H

λ`)vk − ελk = 0 k ∈ H (F.4)

λ` = 0 ` ∈ P+ \H (F.5)
n+1
∑

j=1

λj +
∑

k∈H

λk +
∑

`∈C+\H

λ` = 0 (F.6)

From (F.4) and (F.6), λk = 0, k ∈ H. Thus, also using (F.5), (F.2) and (F.3) reduce to
(F.1). Since λj = 0, j ∈ [1, n+ 1] is the only solution to (F.1), we are done.

Proposition 7.3 The inequalities x1 ≥ 0, x2 ≥ 0 define facets of conv(K≤
2 (b)). Upper

bound constraints x1 ≤ u1 and x2 ≤ u2 define facets of conv(K≤
2 (b)) if and only if t2 ≥ 1

and t1 ≥ 1, respectively.

Proof For i = 1, 2, the inequalities xi ≥ 0 and xi ≤ ui are valid. Therefore, to prove that
any of these inequalities define a facet, it is sufficient to show that there exist two feasible
elements of K≤

2 (b) that satisfy it as an equality.
Since u > 0 by assumption (A.2), the points q2 and q1 are both distinct from q̄. Now,

the points q̄, q2 satisfy x1 = 0, and the points q̄ and q1 satisfy x2 = 0. Therefore, the
inequalities x1 ≥ 0, x2 ≥ 0 define facets of conv(K≤

2 (b)).
If t2 ≥ 1, then points q2 and q3 satisfy x1 = u1. Similarly, if t1 ≥ 1, points q1 and q0

satisfy x2 = u2. Therefore, upper bound constraints x1 ≤ u1 and x2 ≤ u2 define facets of
conv(K≤

2 (b)) if t2 ≥ 1 and t1 ≥ 1, respectively.
For i ∈ [1, 2], point qi is the only element of K≤

2 (b) that satisfies x2−i = u2−i if ti < 1.
Thus, upper bound constraints x1 ≤ u1 and x2 ≤ u2 do not define facets of conv(K≤

2 (b))
only if t2 ≥ 1 and t1 ≥ 1, respectively.

Proposition 7.4 The points q1, q2, q̄, q0 (distinct from q1 if t1 > 1), and q3 (distinct from
q2 if t2 > 1) are extreme points of conv(K≤

2 (b)).

Proof The points q1, q2, and q̄ are elements of K≤
2 (b). To show that any of these points

is an extreme point, it suffices to show that it is the solution of two faces of conv(K≤
2 (b)).

Point q1 denotes the solution of x1 = 0 and x2 = u2. Point q2 denotes the solution of
x2 = 0 and x1 = u1. Point q̄ denotes the solution of x2 = 0 and x1 = 1. Therefore, by
Proposition 7.3, q1, q2, and q̄ are extreme points of conv(K≤

2 (b)).
By definition of q0, there exist no points q ∈ K≤

2 (b) such that q2 > q02. Also, there exist
no points q ∈ K≤

2 (b) such that q2 = q02 and q1 > q01. Thus, q0 can not be written as a
convex combination of any two points in conv(K≤

2 (b)). Therefore, q0 is an extreme point
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of conv(K≤
2 (b)).

Similarly, by definition of q3, there exist no points q ∈ K≤
2 (b) such that q1 > q31. Also,

there exist no points q ∈ K≤
2 (b) such that q1 = q31 and q2 > q32. Thus, q3 can not be written

as a convex combination of any two points in conv(K≤
2 (b)). Therefore, q3 is an extreme

point of conv(K≤
2 (b)).

Proposition 7.5 The point q4 is an extreme point of conv(K≤
2 (b)) if and only if q5 /∈

K≤
2 (b); where q5 is defined as q51 = q41 + 1 and q52 = q42 − (q02 − q42).

Proof If q5 6∈ K≤
2 (b), then for δ ≥ 0 there exists no point q ∈ K≤

2 (b) with q2 = q52 − δ and
q1 > q51 + δ. Since q′1 ≤ q01 for all q′ ∈ K≤

2 (b) with q′2 ≥ q02. Therefore, the point q4 can not
be written as a convex combination of any such q, q′ ∈ K≤

2 (b). Hence, the point q4 is an
extreme point of conv(K≤

2 (b)) if q5 /∈ K≤
2 (b).

The point q0 ∈ K≤
2 (b). By definition of q5, the point q4 = (q5 + q0)/2. Thus, The point

q4 is an extreme point of conv(K≤
2 (b)) only if q5 /∈ K≤

2 (b).

Theorem 7.8 The number of non-trivial extreme points of K≤
2 (b) is bounded from above

by 2blog(γ + 1)c + 2.

Proof We will use extreme points qD and qU in this proof; see Definition 7.7. Points qU

and qD may be identical; in which case there exists no facet such that π1/π2 = a1/a2.
However, there always exists a face such that π1/π2 = a1/a2. Without loss of generality,
we can assume that π ∈ Z+, by scaling.

First, we present an upper bound to qU
1 , and use this to bound the number of extreme

points q such that q1 ∈ [0, qU
1 ]. Counting sequentially from the extreme point on the axis

x1 ≥ 0, such that q11 = 0, q12 = u2, let qi be the ith extreme point. We want an upper bound
to n, where qn = qU . Let πi+1

1 x1 + πi+1
2 x2 ≤ πi+1

0 be the facet described by qi and qi+1,
for i ∈ [1, n]. We set πn+1

1 = a1 and πn+1
2 = a2; this will not define a facet if qU = qD.

πi
1/π

i
2 is strictly increasing in i. For all i ∈ [1, n− 1], we scale πi+1

1 and πi+1
2 such that

qi+1
1 − qi

1 = πi+1
2 , and qi

2 − qi+1
2 = πi+1

1 .
We show by contradiction that πi+1

2 > qi
1, i ∈ [1, n]. Assume that this is not true.

Consider q ∈ Z2
+ such that q1 = qi

1 − πi+1
2 and q2 = qi

2 + πi+1
1 . Since q1 ≥ 0 and

a1q1 +a2q2 = a1q
i
1−a1π

i+1
2 +a2q

i
1 +a2π

i+1
1 ≤ b−a1π

i+1
2 +a2π

i+1
1 ≤ b, we have q ∈ K≤

2 (b).
However, since πi

1/π
i
2 is strictly increasing in i, πi

1q1 + πi
2q2 = πi

0 − πi
1π

i+1
2 + πi

2π
i+1
1 > π0,

which is a contradiction. =⇒ πi+1
2 > qi

1. For i = n, this proves that qn
1 < a2. Trivially,

qn
1 ≤ u1. =⇒ qn

1 ≤ min{a2 − 1, u1}.
Now, πi+1

2 > qi
1 the same as qi+1

1 ≥ 2qi
1 + 1, for i ≤ n − 1. Since q1

1 ≥ 0, we have
qi
1 ≥ 2i−1 − 1, for i ∈ [1, n]. Since qn

1 ≤ γ, we have 2n−1 − 1 ≤ γ. Taking logarithm to base
2, and using the integrality of n, we have that n ≤ blog(min{a2, u1 + 1})c + 1.

Second, we use a similar argument for counting the number of extreme points q such
that q1 ∈ [qD

1 , u1]. Counting sequentially from the extreme point on the axis x2 = 0, such
that q11 = u1, q

1
2 = 0, let qi be the ith extreme point and let qn = qD. It can be shown using

similar arguments that γ ≥ u1−q
i
1 ≥ 2(u1−q

i−1
1 )+1 for i ∈ [1, n]. Combining these result

with u1−q11 ≥ 0, we get u1−qi
1 ≥ 2i−1−1 for i ∈ [1, n]. Hence n ≤ blog(min{a2, u1+1})c+1.

Thus, the number of extreme points is bounded from above by 2blog(min{a2, u1+1})c+2.
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Figure F.1: Extreme points of K≤
2 (b)

πi+1
1

a1x1 + a2x2 ≤ b

x1

x2

q1

qi

qi+1

qU

πi+1
2

q1

Repeating the arguments in this proof for the q2 component of all extreme points of
conv(K≤

2 (b)), we bound the number of extreme points by 2blog(min{a1, u2 +1})c+2.

Lemma 7.12 If p is an extreme point of conv(M≤
n (b)), then either p0 = 0 or p0 =

∑n
i=1 aipi − b.

Proof We prove this by contradiction. Assume that there exists an extreme point p̄ such
that p̄0 > 0 and p̄0 >

∑n
i=1 aip̄i − b. Since p̄ ∈M≤

n (b), we also have p̄i ≥ 0, i ∈ [1, n].
Consider p1, p2 defined as follows. p1

0 = p̄0 +ε, p2
0 = p̄0−ε, and p1

i = p2
i = p̄i, i ∈ [1, n].

Now, p1 ∈ M≤
n (b) since p1

i = p̄i ≥ 0, i ∈ [1, n], p1
0 = p̄0 + ε > 0, and

∑n
i=1 aip

1
i − p1

0 =
∑n

i=1 aip̄i − (p̄0 + ε) <
∑n

i=1 aip̄i − p̄0 < b. Similarly, p2 ∈ M≤
n (b) since p2

i = p̄i ≥ 0, i ∈
[1, n], p2

0 = p̄0 − ε ≥ 0, and
∑n

i=1 aip
2
i − p2

0 =
∑n

i=1 aip̄i − (p̄0 − ε) < b+ ε ≤ b.
Since p̄ can be written as a convex combination of p1 and p2, we are done.

Theorem 7.13 Let p ∈ M≤
n (b) and q ∈ Rn

+ such that qi = pi, i ∈ [1, n]. If p0 = 0, then
p is an extreme point of conv(M≤

n (b)) if and only if q is an extreme point of conv(K≤
n (b)).

On the other hand, if p0 =
∑n

i=1 aipi − b, then p is an extreme point of conv(M≤
n ) if and

only if q is an extreme point of conv(K≥
n (b)).

Proof First, we show that p is an extreme point of conv(M≤
n (b)) if and only if q is an

extreme point of conv(K≤
n (b)) when p0 = 0. We prove this by showing that K≤

n (b) is the
projection of the y = 0 face of M≤

n (b) on the space of x ∈ Z.
Let M ′ be the face of M≤

n (b) such that y = 0. Thus, M ′ = {y = 0,
∑n

i=1 aixi −
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y ≤ b, y ≥ 0, x ∈ Zn
+}. By Fourier-Motzkin elimination (Dantzig and Eaves 1973), the

projection of M ′ on x ∈ Zn
+ is {

∑n
i=1 aixi ≤ b, x ∈ Zn

+}, which is the same as K≤
n (b).

Next, we show that p is an extreme point of conv(M≤
n (b)) if and only if q is an extreme

point of conv(K≥
n (b)) when p0 =

∑n
i=1 aipi − b. We prove this by showing that K≥

n (b) is
the projection of the y =

∑n
i=1 aixi − b face of M≤

n (b) on the space of x ∈ Z.
Let M ′′ be the face of M≤

n (b) such that y =
∑n

i=1 aixi − b. Thus, M ′′ = {y =
∑n

i=1 aixi − b,
∑n

i=1 aixi − y ≤ b, y ≥ 0, x ∈ Zn
+}. Again, by Fourier-Motzkin elimina-

tion, the projection of M ′′ on x ∈ Zn
+ is {

∑n
i=1 aixi − b ≥ 0, x ∈ Zn

+}, which is K≥
n (b).

Lemma 7.16 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. Then, no
non-trivial facet of conv(M≤

n (b)) can be defined by p1, p3, and some p ∈ Z≤; or by p2, p4,
and some p ∈ Z≥.

Proof Since p1, p3, p ∈ Z≤, we have p1
0 = p3

0 = p0 = 0. Since they are also affinely
independent, they define the trivial facet y = 0. =⇒ We have a contradiction.

Similarly, if p ∈ Z≥, then p2, p4, and p define the trivial facet y = a1x1 + a2x2 − b.

Lemma 7.17 Let Γ(p̄, p̂) = (a1p̄1 + a2p̄2 − b)/(p̂1p̄1 + p̂2p̄2 − p̂0). Let p1, p3 ∈ Z≤ and
p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. Consider the half-space π1x1 + π2x2 − y ≤ π0.
If it is defined by p1, p3, and p2, then πi = Γ(p2, π′)π′i, i ∈ [0, 2], where q1, q3 define the
half-space π′1x1 + π′2x2 ≤ π′0. On the other hand, if it is defined by p1, p2, and p4, then
πi = ai − Γ(p1, π′)π′i, i = 1, 2 and π0 = b− Γ(p1, π′)π′0, where q2, q4 define the half-space
π′1x1 + π′2x2 ≥ π′0. Furthermore, Γ ∈ Z+ in either case if the hyperplane is a facet of
conv(M≤

2 (b)).

Proof Since p1
0 = p3

0 = 0, we have π1p
1
1 + π2p

1
2 = π0, and π1p

3
1 + π2p

3
2 = π0. From q1

and q3, we also have π′1q
1
1 + π′2q

1
2 = π0, and π′1q

3
1 + π′2q

3
2 = π0. Since these define the

same system (up to a multiplicative factor), we have πi = `π′i, i ∈ [0, 2]. Substituting this
for p2, we get `π′1p

2
1 + `π′2p

2
2 − p2

0 = `π′0. Since p2
0 = a1p

2
1 + a2p

2
1 − b, we have shown that

` = Γ(p2, π′).
Next, we prove that (π′1p

2
1 + π′2p

2
2 − π′0) = 1 if p1, p2, p3 define a facet. We have

(π′1p
2
1 +π′2p

2
2−π

′
0) = π′1(p

2
1−p

1
1)+π′2(p

2
2−p

1
2), since the point p1 satisfies π′1x1 +π′2x2 ≤ π′0

at equality.
We assume (without loss of generality) that no integral point lies on the line joining p1

and p3. If p1, p2, p3 define a facet, then there exist no integral points in the triangle defined
by the vectors p3 − p1 and p2 − p1. =⇒ Area of the triangle defined by the integral vectors
π′ and p2 − p1 is exactly 0.5 (Scarf 1981). In other words, π′1(p

2
1 − p1

1) − π′2(p
2
2 − p1

2) = 1.
This implies that Γ(p2, π′) ∈ Z if p1, p2, and p3 define a facet.

Similarly, we can prove that πi = ai − Γ(p1, π′)π′i, i = 1, 2, π0 = b − Γ(p1, π′)π′0, and
Γ(p1, π′) ∈ Z when the half-space is defined by p1, p2, and p4.

Lemma 7.18 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. Unless
p1, p3, p2, and p4 define the same hyperplane, either the line joining p1 and p4, or the line
joining p2 and p3 is not a non-trivial face of conv(M≤

2 (b)).

Proof Let the line joining q1 and q4 intersect the line joining q2 and q3 at q∗. Since q∗ is
a convex combination of distinct points, 0 < q∗1 < u1 and 0 < q∗2 < u2.
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We define the points p13 and p24 to lie on the lines joining p1,p4, and p2,p4, respectively,
as follows; p14

1 = p23
1 = q∗1, and p14

2 = p23
2 = q∗2. p14, p23 ∈ M≤

2 (b) since they are convex
combinations of elements of a convex set.

Now, if p14
0 = p23

0 , then p14 and p23 define the same point, say p∗. In this case,
p1, p2, p3, p4 lie on the same hyper-plane, since p4 lies on the line joining p2 and p∗ that
lies on the hyper-plane defined by p1, p2, and p3. This is a contradiction, by assumption.

If p14
0 > p23

0 , then the line joining p1 and p3 can not be a face. We show this by proving
that p14 is not on the boundary of conv(M≤

2 (b)). From q∗, we have 0 < p14
1 < u1 and

0 < p14
2 < u2. Since p23

0 ≥ 0, we have p24
0 > (a1p

14
1 + a2p

14
2 − b)+.

If p14
0 > p23

0 , then we can similarly prove that the line joining p1 and p3 can not define
a face.

Lemma 7.19 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 ≺ p3 and p2 ≺ p4. The half-
space π1x1 + π2x2 − y ≤ π0 defined by p1, p3, and p2 does not contain any p ∈ Z≤ such
that p ∈ f(p1, p3). Similarly, the half-space defined by p1, p2, and p4 does not contain
p ∈ Z≥ such that p ∈ f(p2, p4).

Proof Using the corresponding elements q, q1, q3 ∈ X≤, we have (p2 − p1
2)/(p

1
1 − p1) >

(p3
2−p

1
2)/(p

1
1−p

3
1) From the proof of Lemma 7.17, we get π1/π2 = π′1/π

′
2 = (p3

2−p
1
2)/(p

1
1−

p3
1). Now, π1p1 + π2p2 − p0 = π0 − π1(p

1
1 − p1) + π2(p2 − p1

2) > π0, which proves the first
part of the lemma.

Similarly, we can prove that the half-space defined by p1, p2, and p4 does not contain
p ∈ Z≥ such that p ∈ f(p2, p4).

Lemma 7.20 Let p1, p3 ∈ Z≤ and p2, p4 ∈ Z≥ such that p1 � p3 and p2 � p4. Then,
p1, p3 define a facet with some p ∈ Z≥, and p2, p4 define a facet with some p ∈ Z≤.

Proof Since p1, p3 ∈ Z≤ are extreme points, they define a line that is a one-dimensional
face. This line must be an intersection of two facets (two-dimensional faces). One of
them is y ≥ 0, which passes through all points in Z≤. The other facet must pass through
some point in Z≥.

Similarly, we can prove that all adjacent points p2, p4Z≥ define the trivial facet a1x1 +
a2x2 − y = b and a non-trivial facet with some p ∈ Z≤.

Lemma 7.21 Let p5, p1, p3 ∈ Z≤ and p6, p2, p4 ∈ Z≥ such that p5 � p1 � p3 and
p6 � p2 � p4. If either p1, p6, and p2; or p5, p1, and p2 define a facet, then so do either
p1, p3, and p2; or p1, p2 and p4.

Proof From Lemma 7.20, the pair of adjacent extreme points p1, p3 must define a facet
with some p ∈ Z≥. Thus, the line joining p and p3 defines a face of conv(M≤

2 (b)).
If p = p2, then p1, p3, and p2 define a facet, and we are done.
Assume it is not so. Since p1, p2 define a facet with either p6 or p5, the line joining p1

and p2 is a non-trivial face of conv(M≤
2 (b)). From Lemma 7.18, we have a contradiction if

p ≺ p2. In other words, p must be after p2 in the ordered set Z≥.
Now, p1, p2 and p1, p are non-trivial faces of conv(M≤

2 (b)). Since p4 ∈ Z≥ is between
p2 and p, it can define a non-trivial face only with p1; from Lemma 7.18. Furthermore, p2

and p4 must define a non-trivial facet with some p′ ∈ Z≤. Therefore, p′ = p1, and we are
done.
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Lemma 7.22 Let p5, p1, p3 ∈ Z≤ and p6, p2, p4 ∈ Z≥ such that p5 � p1 � p3 and
p6 � p2 � p4. The half-space π1x1 + π2x2 − y ≤ π0 defined by p1, p3, and p2 contains
all p ∈ Z≤, p 6= p1, p3. Furthermore, if it contains p4 (p6), then it contains all points
p (p′) ∈ Z≥ such that p � p4 (p′ ≺ p6). Similarly, the half-space defined by p2, p4, and
p1 contains all p ∈ Z≥, p 6= p2, p4. Furthermore, if it contains p3 (p5), then it contains all
points p (p′) ∈ Z≤ such that p � p3 (p′ ≺ p5).

Proof We only prove the first part of the lemma here; the second is proved similarly.
Let p, p′ ∈ Z≤, p, p

′ 6= p1, p3 such that p � p3 and p′ ≺ p1. Using the corresponding
elements q, q′, q1, q3 ∈ X≤, we have (p2 − p3

2)/(p
3
1 − p1) < (p3

2 − p1
2)/(p

1
1 − p3

1) < (p3
2 −

p′2)/(p
′
1−p

3
1). From the proof of Lemma 7.17, we get π1/π2 = π′1/π

′
2 = (p3

2−p
1
2)/(p

1
1−p

3
1).

Now, π1p1 + π2p2 = π0 − π1(p
3
1 − p1) + π2(p2 − p3

2) < π0. Similarly, π1p
′
1 + π2p

′
2 =

π0 + π1(p
′
1 − p3

1) − π2(p
3
2 − p′2) < π0.

Now, let p, p′ ∈ Z≥ such that p � p4 and p′ ≺ p6. For any p ∈ Z≥ such that p � p4,
the half-space contains p if and only if (a1 − π1)/(a2 − π2) ≤ (p2 − p2

2)/(p
2
1 − p1) Using the

corresponding elements q, q2 ∈ X≥, the right hand side in the above inequality increases
in the ordered list Z≥. Thus, if the inequality is true for p4, then it is true for all p ∈ Z≥ such
that p � p4. Similarly, it can be shown that if the half-space contains p6, then it contains
all p′ ∈ Z≥ such that p′ ≺ p6.

Proposition 7.25 If e ≥ β − ρ, then f is super-additive.

Proof We prove this by a case analysis of the possible values of d1, d2. We define
ki = b(di − e)/βc and ri = r(di − e, β) i = 1, 2. Furthermore, let k0 = b(e+ ρ)/βc − 1 and
r0 = r(e + ρ, β). Since e ≥ β − ρ, we have k0 ≥ 0. Now, f(d1 + d2) = f(e + (k1 + k2 +
k0 + 1)β + r1 + r2 + r0 − ρ). γ is equal to δβ + ρ(α− δ); we will use this repeatedly.

Case 1: r1 ≤ ρ, r2 ≤ ρ.
f(d1) + f(d2) = 2c+ (k1 + k2)γ + α(r1 + r2).
When r1 +r2 +r0−ρ ≤ ρ, we have f(d1 +d2) = c+(k1 +k2 +k0 +1)γ+α(r1 +r2 +r0−ρ).
Therefore, we have f(d1 + d2)− f(d1)− f(d2) = γ(k0 + 1) + α(r0 − ρ)− c ≥ (k0 + 1)(γ −
δβ) + (α − δ)(r0 − ρ) = (α − δ)(r0 + k0ρ). Since r0 ≥ 0 and k0 ≥ 0, f is super-additive.
For larger values of r1 + r2 + r0 − ρ, f(d1 + d2) can only increase.

Case 2: r1 ≤ ρ, r2 ≥ ρ.
f(d1) + f(d2) = 2c+ (k1 + k2)γ + αr1 + δr2 + (α− δ)ρ.
When r1 +r2 +r0−ρ ≤ ρ, we have f(d1 +d2) = c+(k1 +k2 +k0 +1)γ+α(r1 +r2 +r0−ρ).
Therefore, we have f(d1+d2)−f(d1)−f(d2) = γ(k0+1)+αr0+(α−δ)r2+(δ−2α)ρ−c ≥
(k0 +1)(γ− δβ)+(α− δ)(r0−2ρ+ r2) = (α− δ)(r0 +(k0−1)ρ+ r2). Since r0 ≥ 0, r2 ≥ ρ,
and k0 ≥ 0, f is super-additive. For larger values of r1 + r2 + r0 − ρ, f(d1 + d2) can only
increase. The case r1 ≥ ρ ≥ r2 is proved analogously.

Case 3: r1 ≥ ρ, r2 ≥ ρ.
f(d1) + f(d2) = 2c+ (k1 + k2)γ + 2αρ+ δ(r1 + r2 − 2ρ).
When ρ ≤ r1 + r2 + r0 − ρ ≤ β, we have f(d1 + d2) = c+(k1 + k2 + k0 +1)γ+αρ+ δ(r1 +
r2 + r0 − 2ρ). Therefore, we have f(d1 + d2)− f(d1)− f(d2) = γ(k0 + 1) + δr0 −αρ− c ≥
(k0 + 1)(γ − δβ) − (α − δ)ρ = (α − δ)k0ρ. Since k0 ≥ 0, f is super-additive. For larger
values of r1 + r2 + r0 − ρ, f(d1 + d2) can only increase.

Proposition 7.26 f is super-additive if and only if c ≤ c1 or c ≤ c2.
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Proof First, we prove that f is super-additive if c ≤ c1 or c ≤ c2. We prove this by a
case analysis of the possible values of d1, d2. We define ki = b(di − e)/βc and ri =
r(di − e, β) i = 1, 2. We have f(d1 + d2) = f(e+ (k1 + k2)β + r1 + r2 + e).

Case 1: r1 ≤ ρ, r2 ≤ ρ.
f(d1) + f(d2) = 2c+ (k1 + k2)γ + α(r1 + r2).
When r1 + r2 + e ≤ ρ, we have f(d1 + d2) = c+(k1 + k2)γ+α(r1 + r2 + e). Therefore, we
have f(d1 + d2)− f(d1)− f(d2) = αe− c. When c ≤ c2, f is super-additive since c2 ≤ eα.
When c ≤ c1, αe− c ≥ e(α− δ) + ρ(α− δ) ≥ 0.
For larger values of r1 + r2 + e, f(d1 + d2) can only increase.

Case 2: r1 ≤ ρ, r2 ≥ ρ.
f(d1) + f(d2) = 2c+ (k1 + k2)γ + α(r1 + ρ) + δ(r2 − ρ).
Now, r1 + r2 + e ≥ ρ. When r1 + r2 + e ≤ β, we have f(d1 + d2) = c+ (k1 + k2)γ + αρ+
δ(r1 + r2 + e − ρ). Therefore, we have f(d1 + d2) − f(d1) − f(d2) = δ(r1 + e) − c − αr1.
When c = c2, this is equal to (δ − α)(r1 + e − β + ρ) ≥ 0 (since r1 + e ≤ β − r2). When
c = c1, this is equal to (α− δ)(ρ− r1) ≥ 0 (since r1 ≤ ρ).
For larger values of r1 + r2 + e, f(d1 + d2) can only increase. The case r1 ≥ ρ ≥ r2 is
proved analogously.

Case 3: r1 ≥ ρ, r2 ≥ ρ.
f(d1) + f(d2) = 2c+ (k1 + k2)γ + 2αρ+ δ(r1 + r2 − 2ρ).
Now, r1 + r2 + e ≥ ρ. When ρ ≤ r1 + r2 + e ≤ β, we have f(d1 + d2) = c+ (k1 + k2)γ +
αρ+ δ(r1 + r2 + e− ρ). Therefore, we have f(d1 + d2)− f(d1)− f(d2) = δ(ρ+ e)− c−αρ.
When c = c2, this is equal to (δ−α)(e+ 2ρ−β) ≥ 0 (since e ≤ β− r1 − r2). When c = c1,
f(d1 + d2) − f(d1) − f(d2) = 0 (since c1 = δ(ρ+ e) − αρ).
For larger values of r1 + r2 + e, f(d1 + d2) can only increase.

Next, we prove that f is not super-additive if c > c1 and c > c2. We prove this
by constructing d1 and d2 such that f(d1 + d2) < f(d1) + f(d2). Let d1,d2 such that
r1 = r2 = ρ. Now, f(d1) + f(d2) = 2c+ (k1 + k2)γ + 2αρ.
When ρ ≤ e+2ρ ≤ β, f(d1 +d2) = c+γ(k1 +k2)+αρ+δ(ρ+e). We have f(d1)+f(d2)−
f(d1 + d2) = c+ αρ− δ(ρ+ e) > 0 (since c > c1 ≥ c2).
When β ≤ e+2ρ, f(d1 +d2) = c+γ(k1 +k2)+γ+α(2ρ+ e−β) since e+2ρ < β+ρ. We
have f(d1)+f(d2)−f(d1 +d2) = c−γ−α(e−β) > αe− (β−ρ)(α−δ)−α(e−β)−γ = 0.
(The inequality is because c > c2 ≥ c1, and the equality because γ = αρ+ (β − ρ)δ.)

Proposition 7.27 g is super-additive if and only if c ≤ c0 or c ≤ c3.

Proof First, we prove that g is super-additive if c ≤ c0 or c ≤ c3. We prove this by a
case analysis of the possible values of d1, d2. We define ki = b(di − e)/βc and ri =
r(di − e, β) i = 1, 2. We have g(d1 + d2) = g(e+ (k1 + k2)β + r1 + r2 + e).

Case 1: r1 ≤ ρ, r2 ≤ ρ.
g(d1) + g(d2) = 2c+ (k1 + k2)γ + α(r1 + r2).
When r1 + r2 + e ≤ ρ, we have g(d1 + d2) = c+ (k1 + k2)γ+α(r1 + r2 + e). Therefore, we
have g(d1 + d2) − g(d1) − g(d2) = αe− c. When c ≤ c3, g is super-additive since c3 ≤ αe.
When c ≤ c0, αe− c ≥ (α− δ)e ≥ 0. For larger r1 + r2 + e, g(d1 + d2) can only increase.

Case 2: r1 ≤ ρ, r2 ≥ ρ.
g(d1) + g(d2) = 2c+ (k1 + k2)γ + α(r1 + ρ) + δ(r2 − ρ).
Now, r1+r2+e ≥ β. When r1+r2+e ≤ β+ρ, we have g(d1+d2) = c+(k1+k2)γ+γ+α(r1+
r2+e−β). Therefore, we have g(d1+d2)−g(d1)−g(d2) = γ−δ(r2−ρ)−c+α(r2+e−β−ρ) =
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(α− δ)(r2 − β) + αe− c. (The last equality is because γ = αρ+ δ(β − ρ).) When c ≤ c0,
this is equal to (α − δ)(r2 + e − β) ≥ 0 (since r2 + e ≥ β). When c ≤ c3, this is equal to
(α− δ)(β − 2ρ+ r2) ≥ 0 (since r2 ≥ ρ).
For larger values of r1 + r2 + e, g(d1 + d2) can only increase. The case r1 ≥ ρ ≥ r2 is
proved analogously.

Case 3: r1 ≥ ρ, r2 ≥ ρ.
g(d1) + g(d2) = 2c+ (k1 + k2)γ + 2αρ+ δ(r1 + r2 − 2ρ).
Now, r1 + r2 + e ≥ β + ρ. When r1 + r2 + e ≤ 2β, we have g(d1 + d2) = c + (k1 +
k2)γ + γ + αρ+ δ(r1 + r2 + e− ρ− β). Therefore, we have g(d1 + d2) − g(d1) − g(d2) =
γ+ δ(e+ρ−β)− c−αρ = δe− c. (The last equality is because γ = αρ+ δ(β−ρ).) When
c ≤ c0, this is trivially true. When c ≤ c3, g(d1+d2)−g(d1)−g(d2) = (α−δ)(2β−2ρ−e) ≥ 0
(since 2β − e ≥ r1 + r2).
For larger values of r1 + r2 + e, g(d1 + d2) can only increase.

Next, we prove that g is not super-additive if c > c0 and c > c3. We prove this by
presenting d1 and d2 such that g(d1 + d2) < g(d1) + g(d2). Let r1 = r2 = ρ. Now,
g(d1) + g(d2) = 2c+ (k1 + k2)γ + 2αρ.
When β + ρ ≤ e + 2ρ ≤ 2β, g(d1 + d2) = c + γ(k1 + k2) + γ + αρ + δ(ρ + e − β). We
have g(d1) + g(d2)− g(d1 + d2) = c+ αρ− δ(ρ+ e− β)− γ = c− δe > 0. (The equality is
because γ = αρ+ (β − ρ)δ and the inequality is because c > c0 ≥ c3.)
When 2β ≤ e+ 2ρ ≤ 2β + ρ, g(d1 + d2) = c+ γ(k1 + k2) + 2γ + α(2ρ+ e− 2β). We have
g(d1) + g(d2)− g(d1 + d2) = c− 2γ − α(e− 2β) = c− αe+ 2(α− δ)(β − ρ) > 0. (The first
equality is because γ = αρ+ (β − ρ)δ and the inequality is because c > c3 ≥ c0.)

232


